Loading…

Comparison of single-cell testing, short-stack testing and mathematical modeling methods for a direct methanol fuel cell

In this paper, a comparison between direct methanol fuel cell (DMFC) measurements performed on a single cell and a short-stack, and the results of a mathematical model for a DMFC, is presented. The testing of a short-stack, which consists of 5 cells with an active area of 315 cm2, was performed at v...

Full description

Saved in:
Bibliographic Details
Published in:International journal of hydrogen energy 2021-01, Vol.46 (6), p.4844-4856
Main Authors: Karaoglan, Mustafa Umut, Ince, Alper Can, Glüsen, Andreas, Colpan, C. Ozgur, Müller, Martin, Stolten, Detlef, Kuralay, Nusret Sefa
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, a comparison between direct methanol fuel cell (DMFC) measurements performed on a single cell and a short-stack, and the results of a mathematical model for a DMFC, is presented. The testing of a short-stack, which consists of 5 cells with an active area of 315 cm2, was performed at various current densities, permeation current densities, and cathode flow rates (CFR) in order to determine the voltage outputs of each cell. Methanol concentration and stack temperature results obtained from short-stack testing were then integrated into the single cell test and single cell mathematical model as the input parameters. For the mathematical modelling, transport equations originating from methanol, water, and oxygen were coupled with the electrochemical relations. Therefore, a comparison between these three methods is made in order to gain a deeper understanding of the effects of the operating parameters on DMFC performance. This study showed that the model could describe experimental results well when lower methanol concentrations (under 1.2 M) and temperature (under 60 °C) values are used as input parameters. The results also show very good agreement at lower methanol permeation rates and therefore lower temperatures. It is found that the voltage output for a given current density is higher for the theoretical model than that of the experimental studies; and the differences in the results can be up to 0.04 V for a cell. •Single-cell testing and short-stack testing are performed for a DMFC.•One dimensional mathematical modeling of a DMFC is calculated.•Stack and cell testings and numerical solutions are compared for DMFC.
ISSN:0360-3199
1879-3487
DOI:10.1016/j.ijhydene.2020.02.107