Loading…
Forging furnace with thermochemical waste-heat recuperation by natural gas reforming: Fuel saving and heat balance
This paper considers thermochemical recuperation (TCR) of waste-heat using natural gas reforming by steam and combustion products. Combustion products contain steam (H2O), carbon dioxide (CO2), and ballast nitrogen (N2). Because endothermic chemical reactions take place, methane steam-dry reforming...
Saved in:
Published in: | International journal of hydrogen energy 2021-01, Vol.46 (1), p.100-109 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper considers thermochemical recuperation (TCR) of waste-heat using natural gas reforming by steam and combustion products. Combustion products contain steam (H2O), carbon dioxide (CO2), and ballast nitrogen (N2). Because endothermic chemical reactions take place, methane steam-dry reforming creates new synthetic fuel that contains valuable combustion components: hydrogen (H2), carbon monoxide (CO), and unreformed methane (CH4). There are several advantages to performing TCR in the industrial furnaces: high energy efficiency, high regeneration rate (rate of waste-heat recovery), and low emission of greenhouse gases (CO2, NOx). As will be shown, the use of TCR is significantly increasing the efficiency of industrial furnaces – it has been observed that TCR is capable of reducing fuel consumption by nearly 25%. Additionally, increased energy efficiency has a beneficial effect on the environment as it leads to a reduction in greenhouse gas emissions.
•Fuel saving by thermochemical waste-heat recuperation (TCR).•TCR is capable of reducing fuel consumption by nearly 25%.•TCR can be considered as hydrogen-rich fuel production technology. |
---|---|
ISSN: | 0360-3199 1879-3487 |
DOI: | 10.1016/j.ijhydene.2020.09.228 |