Loading…

Evaluation of DCX converters for off-grid photovoltaic-based green hydrogen production

Photovoltaic (PV) to electrolyzer power systems are an attractive research topic since the PV produced power can be optimized by skipping power conversion into AC and producing a direct DC-DC interface. Existing DC-DC power conversion systems to directly interface the PV generation and Hydrogen (H2)...

Full description

Saved in:
Bibliographic Details
Published in:International journal of hydrogen energy 2021-06, Vol.46 (38), p.19861-19870
Main Authors: Concha, Diego, Renaudineau, Hugues, Hernández, Matías S., Llor, Ana M., Kouro, Samir
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Photovoltaic (PV) to electrolyzer power systems are an attractive research topic since the PV produced power can be optimized by skipping power conversion into AC and producing a direct DC-DC interface. Existing DC-DC power conversion systems to directly interface the PV generation and Hydrogen (H2) electrolyzer are mainly based in interleaved structures or multi-resonant converters. Soft-switching characteristics are also suitable for these conversion topologies and DCX converters are then serious candidates to be used. DCX provides an isolated high efficiency solution but the DCX-based two-stage converter topology must be optimized in order to obtain better efficiency and energy yield. In this work a detailed comparison of DCX topologies is given for a PV to H2 application. The proposed optimized system is validated through simulation in a multi-string electrolysis system, showing the relevance of the solution for this application. The proposed approach reaches a global maximum efficiency of 98.2%.
ISSN:0360-3199
1879-3487
DOI:10.1016/j.ijhydene.2021.03.129