Loading…
Evaluation of DCX converters for off-grid photovoltaic-based green hydrogen production
Photovoltaic (PV) to electrolyzer power systems are an attractive research topic since the PV produced power can be optimized by skipping power conversion into AC and producing a direct DC-DC interface. Existing DC-DC power conversion systems to directly interface the PV generation and Hydrogen (H2)...
Saved in:
Published in: | International journal of hydrogen energy 2021-06, Vol.46 (38), p.19861-19870 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Photovoltaic (PV) to electrolyzer power systems are an attractive research topic since the PV produced power can be optimized by skipping power conversion into AC and producing a direct DC-DC interface. Existing DC-DC power conversion systems to directly interface the PV generation and Hydrogen (H2) electrolyzer are mainly based in interleaved structures or multi-resonant converters. Soft-switching characteristics are also suitable for these conversion topologies and DCX converters are then serious candidates to be used. DCX provides an isolated high efficiency solution but the DCX-based two-stage converter topology must be optimized in order to obtain better efficiency and energy yield. In this work a detailed comparison of DCX topologies is given for a PV to H2 application. The proposed optimized system is validated through simulation in a multi-string electrolysis system, showing the relevance of the solution for this application. The proposed approach reaches a global maximum efficiency of 98.2%. |
---|---|
ISSN: | 0360-3199 1879-3487 |
DOI: | 10.1016/j.ijhydene.2021.03.129 |