Loading…
Catalytic mechanism of TiO2 quantum dots on the de/re-hydrogenation characteristics of magnesium hydride
In the present study, the catalyst anatase titanium dioxide (TiO2) quantum dots (QDs) of size ∼ (2.50–4.00)nm was successfully synthesized by the hydrothermal method. The formation of TiO2: QDs has been established by UV–Vis spectroscopy and confirmed by transmission electron microscopy. Here, we re...
Saved in:
Published in: | International journal of hydrogen energy 2021-10, Vol.46 (75), p.37340-37350 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In the present study, the catalyst anatase titanium dioxide (TiO2) quantum dots (QDs) of size ∼ (2.50–4.00)nm was successfully synthesized by the hydrothermal method. The formation of TiO2: QDs has been established by UV–Vis spectroscopy and confirmed by transmission electron microscopy. Here, we report the catalytic action of TiO2:QDs on de/re-hydrogenation properties of magnesium hydride (MgH2/Mg). By catalyzing MgH2 through this catalyst, the onset desorption temperature of MgH2 gets reduced significantly from ∼360 °C (for ball-milled MgH2) to ∼260 °C. Moreover, the Mg-TiO2: QDs sample absorbed a significant amount of hydrogen up to ∼6.10 wt% in just 77sec at 280 °C. Improved rehydrogenation kinetics has been found even at lower temperatures by absorbing ∼5.30 wt% in 74 s at 225 °C and ∼5.0 wt% of hydrogen in 30 min at 100 °C. Based on structural,.microstructural, and XPS investigations, a feasible mechanism for improved hydrogen sorption and cyclic stability in MgH2 catalyzed with TiO2:QDs has been explained and discussed. To our knowledge, no studies have been carried out on the sorption of hydrogen in MgH2 catalyzed by TiO2:QDs.
•TiO2 quantum dots were synthesized by the hydrothermal method.•MgH2 catalyzed with the TiO2:QDs shows good cyclic stability.•Valency change of Ti, leads to improvement of dehydrogenation kinetics. |
---|---|
ISSN: | 0360-3199 1879-3487 |
DOI: | 10.1016/j.ijhydene.2021.09.006 |