Loading…
Physical, Optical, Structural and Thermal Studies of xWO3 + (30 − x)As2O3 + 70TeO2 (where x = 10, 20, 30 mol%) glasses by UV–vis, Raman, IR and DSC Studies
•In corporation of WO3 enhances the thermal stability against the devitrification.•The optical transmittance of glass enhances, that could be helpful in manufacturing the optical fiber cable.•The IR and Raman spectra of present glass system reveals that the W4+ state is less in concentration than th...
Saved in:
Published in: | Optik (Stuttgart) 2020-12, Vol.224, p.165450, Article 165450 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c218t-4d3ba1c1dd85d6487bf0fb3e333af5cbe3214f23d4ba8ad145486b4a043db7ef3 |
---|---|
cites | cdi_FETCH-LOGICAL-c218t-4d3ba1c1dd85d6487bf0fb3e333af5cbe3214f23d4ba8ad145486b4a043db7ef3 |
container_end_page | |
container_issue | |
container_start_page | 165450 |
container_title | Optik (Stuttgart) |
container_volume | 224 |
creator | Siripuram, Rajesh Satya Gopal Rao, P. Sripada, Suresh |
description | •In corporation of WO3 enhances the thermal stability against the devitrification.•The optical transmittance of glass enhances, that could be helpful in manufacturing the optical fiber cable.•The IR and Raman spectra of present glass system reveals that the W4+ state is less in concentration than the W6+ state.•This seldom coordinate state of WO3 in the present glass system supports the network stability.
Optical, Structural and Thermal properties of xWO3 + (30 − x)As2O3 + 70TeO2 glass system (where x = 10, 20, & 30 mol%) have been investigated by Optical absorption, Raman & FT-IR, and DSC studies respectively. Physical properties such as, density (ρ), molar volume (Vm), oxygen packing density (OPD), and oxygen molar volume (Vo) are determined for all the glass samples. Density and oxygen packing density (OPD) of glasses have been increasing monotonically with increase in WO3 content in the range 6.52–6.99 g m/cc, and 85.951–88.690 mol/l respectively. These values are correlated with molar volume and oxygen molar volume that are decreasing linearly with increase in WO3 content (10–30 mol%) falling in the range 26.745–25.932 cm3/mol and 11.628–11.274 cm3/mol respectively. The optical transitions and electronic band structure has also been investigated through optical absorption spectra. The fundamental absorption edge is measured in the short wavelength of the visible region, that shows, glasses exhibits the redshift (449 → 483 nm), at photon energy in the range 2.89–2.70 eV for direct allowed transitions. Raman and IR spectral studies reveals that the glass network consists of TeO4 (tbp), TeO3/TeO3+1 (tp), WO6 (octahedral), WO4 (tetrahedra) and AsO3 groups as basic structural units. Thermal behavior of the glasses was studied in terms of glass transition temperature (Tg), onset crystallization (To), peak crystallization (Tp) temperatures, and the thermal stability (ΔT) from DSC thermogrms. In the present glass system, it is found that the glass transition temperature (Tg = 331 → 341 → 353 °C) and thermal stability (ΔT = 56 → 93 → 120 °C) both increases linearly with increase in concentration of WO3 (10, 20, & 30 mol%). |
doi_str_mv | 10.1016/j.ijleo.2020.165450 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_ijleo_2020_165450</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0030402620312869</els_id><sourcerecordid>S0030402620312869</sourcerecordid><originalsourceid>FETCH-LOGICAL-c218t-4d3ba1c1dd85d6487bf0fb3e333af5cbe3214f23d4ba8ad145486b4a043db7ef3</originalsourceid><addsrcrecordid>eNp9kLlOAzEQhi0EEuF4Aho3SCCyYXzs0VCgcEWKFEQClJbX9oKjTRbZm5B0lNTwIIhXypNgEqCk-GdGM_pmRj9CewRaBEhyPGzZYWmqFgUaOknMY1hDDZKQLCKMJeuoAcAg4kCTTbTl_RAA0hTSBvq8fpx7q2TZxL2nelX0azdR9cTJEsuxxoNH40ah7tcTbY3HVYFn9z22ePk4CjpgEOLi9S3E2eGpp3-TFAamR_HBc-ANnoXOSRCBJqZBS2xUlfuH-KGU3ofF-Rzf3i1e3qfWN_GNHMlxE3dulj-c9du_93fQRiFLb3Z_8ja6vTgftK-ibu-y0z7tRoqSrI64ZrkkimidxTrhWZoXUOTMMMZkEavcMEp4QZnmucykJjzmWZJzCZzpPDUF20ZstVe5yntnCvHk7Ei6uSAgvl0XQ7F0XXy7LlauB-pkRZnw2tQaJ7yyZqyMts6oWujK_st_AeoOlEY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Physical, Optical, Structural and Thermal Studies of xWO3 + (30 − x)As2O3 + 70TeO2 (where x = 10, 20, 30 mol%) glasses by UV–vis, Raman, IR and DSC Studies</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Siripuram, Rajesh ; Satya Gopal Rao, P. ; Sripada, Suresh</creator><creatorcontrib>Siripuram, Rajesh ; Satya Gopal Rao, P. ; Sripada, Suresh</creatorcontrib><description>•In corporation of WO3 enhances the thermal stability against the devitrification.•The optical transmittance of glass enhances, that could be helpful in manufacturing the optical fiber cable.•The IR and Raman spectra of present glass system reveals that the W4+ state is less in concentration than the W6+ state.•This seldom coordinate state of WO3 in the present glass system supports the network stability.
Optical, Structural and Thermal properties of xWO3 + (30 − x)As2O3 + 70TeO2 glass system (where x = 10, 20, & 30 mol%) have been investigated by Optical absorption, Raman & FT-IR, and DSC studies respectively. Physical properties such as, density (ρ), molar volume (Vm), oxygen packing density (OPD), and oxygen molar volume (Vo) are determined for all the glass samples. Density and oxygen packing density (OPD) of glasses have been increasing monotonically with increase in WO3 content in the range 6.52–6.99 g m/cc, and 85.951–88.690 mol/l respectively. These values are correlated with molar volume and oxygen molar volume that are decreasing linearly with increase in WO3 content (10–30 mol%) falling in the range 26.745–25.932 cm3/mol and 11.628–11.274 cm3/mol respectively. The optical transitions and electronic band structure has also been investigated through optical absorption spectra. The fundamental absorption edge is measured in the short wavelength of the visible region, that shows, glasses exhibits the redshift (449 → 483 nm), at photon energy in the range 2.89–2.70 eV for direct allowed transitions. Raman and IR spectral studies reveals that the glass network consists of TeO4 (tbp), TeO3/TeO3+1 (tp), WO6 (octahedral), WO4 (tetrahedra) and AsO3 groups as basic structural units. Thermal behavior of the glasses was studied in terms of glass transition temperature (Tg), onset crystallization (To), peak crystallization (Tp) temperatures, and the thermal stability (ΔT) from DSC thermogrms. In the present glass system, it is found that the glass transition temperature (Tg = 331 → 341 → 353 °C) and thermal stability (ΔT = 56 → 93 → 120 °C) both increases linearly with increase in concentration of WO3 (10, 20, & 30 mol%).</description><identifier>ISSN: 0030-4026</identifier><identifier>EISSN: 1618-1336</identifier><identifier>DOI: 10.1016/j.ijleo.2020.165450</identifier><language>eng</language><publisher>Elsevier GmbH</publisher><subject>DSC ; Optical properties ; Physical properties ; Raman ; Tellurite glass</subject><ispartof>Optik (Stuttgart), 2020-12, Vol.224, p.165450, Article 165450</ispartof><rights>2020 Elsevier GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c218t-4d3ba1c1dd85d6487bf0fb3e333af5cbe3214f23d4ba8ad145486b4a043db7ef3</citedby><cites>FETCH-LOGICAL-c218t-4d3ba1c1dd85d6487bf0fb3e333af5cbe3214f23d4ba8ad145486b4a043db7ef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Siripuram, Rajesh</creatorcontrib><creatorcontrib>Satya Gopal Rao, P.</creatorcontrib><creatorcontrib>Sripada, Suresh</creatorcontrib><title>Physical, Optical, Structural and Thermal Studies of xWO3 + (30 − x)As2O3 + 70TeO2 (where x = 10, 20, 30 mol%) glasses by UV–vis, Raman, IR and DSC Studies</title><title>Optik (Stuttgart)</title><description>•In corporation of WO3 enhances the thermal stability against the devitrification.•The optical transmittance of glass enhances, that could be helpful in manufacturing the optical fiber cable.•The IR and Raman spectra of present glass system reveals that the W4+ state is less in concentration than the W6+ state.•This seldom coordinate state of WO3 in the present glass system supports the network stability.
Optical, Structural and Thermal properties of xWO3 + (30 − x)As2O3 + 70TeO2 glass system (where x = 10, 20, & 30 mol%) have been investigated by Optical absorption, Raman & FT-IR, and DSC studies respectively. Physical properties such as, density (ρ), molar volume (Vm), oxygen packing density (OPD), and oxygen molar volume (Vo) are determined for all the glass samples. Density and oxygen packing density (OPD) of glasses have been increasing monotonically with increase in WO3 content in the range 6.52–6.99 g m/cc, and 85.951–88.690 mol/l respectively. These values are correlated with molar volume and oxygen molar volume that are decreasing linearly with increase in WO3 content (10–30 mol%) falling in the range 26.745–25.932 cm3/mol and 11.628–11.274 cm3/mol respectively. The optical transitions and electronic band structure has also been investigated through optical absorption spectra. The fundamental absorption edge is measured in the short wavelength of the visible region, that shows, glasses exhibits the redshift (449 → 483 nm), at photon energy in the range 2.89–2.70 eV for direct allowed transitions. Raman and IR spectral studies reveals that the glass network consists of TeO4 (tbp), TeO3/TeO3+1 (tp), WO6 (octahedral), WO4 (tetrahedra) and AsO3 groups as basic structural units. Thermal behavior of the glasses was studied in terms of glass transition temperature (Tg), onset crystallization (To), peak crystallization (Tp) temperatures, and the thermal stability (ΔT) from DSC thermogrms. In the present glass system, it is found that the glass transition temperature (Tg = 331 → 341 → 353 °C) and thermal stability (ΔT = 56 → 93 → 120 °C) both increases linearly with increase in concentration of WO3 (10, 20, & 30 mol%).</description><subject>DSC</subject><subject>Optical properties</subject><subject>Physical properties</subject><subject>Raman</subject><subject>Tellurite glass</subject><issn>0030-4026</issn><issn>1618-1336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kLlOAzEQhi0EEuF4Aho3SCCyYXzs0VCgcEWKFEQClJbX9oKjTRbZm5B0lNTwIIhXypNgEqCk-GdGM_pmRj9CewRaBEhyPGzZYWmqFgUaOknMY1hDDZKQLCKMJeuoAcAg4kCTTbTl_RAA0hTSBvq8fpx7q2TZxL2nelX0azdR9cTJEsuxxoNH40ah7tcTbY3HVYFn9z22ePk4CjpgEOLi9S3E2eGpp3-TFAamR_HBc-ANnoXOSRCBJqZBS2xUlfuH-KGU3ofF-Rzf3i1e3qfWN_GNHMlxE3dulj-c9du_93fQRiFLb3Z_8ja6vTgftK-ibu-y0z7tRoqSrI64ZrkkimidxTrhWZoXUOTMMMZkEavcMEp4QZnmucykJjzmWZJzCZzpPDUF20ZstVe5yntnCvHk7Ei6uSAgvl0XQ7F0XXy7LlauB-pkRZnw2tQaJ7yyZqyMts6oWujK_st_AeoOlEY</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Siripuram, Rajesh</creator><creator>Satya Gopal Rao, P.</creator><creator>Sripada, Suresh</creator><general>Elsevier GmbH</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202012</creationdate><title>Physical, Optical, Structural and Thermal Studies of xWO3 + (30 − x)As2O3 + 70TeO2 (where x = 10, 20, 30 mol%) glasses by UV–vis, Raman, IR and DSC Studies</title><author>Siripuram, Rajesh ; Satya Gopal Rao, P. ; Sripada, Suresh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c218t-4d3ba1c1dd85d6487bf0fb3e333af5cbe3214f23d4ba8ad145486b4a043db7ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>DSC</topic><topic>Optical properties</topic><topic>Physical properties</topic><topic>Raman</topic><topic>Tellurite glass</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Siripuram, Rajesh</creatorcontrib><creatorcontrib>Satya Gopal Rao, P.</creatorcontrib><creatorcontrib>Sripada, Suresh</creatorcontrib><collection>CrossRef</collection><jtitle>Optik (Stuttgart)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Siripuram, Rajesh</au><au>Satya Gopal Rao, P.</au><au>Sripada, Suresh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physical, Optical, Structural and Thermal Studies of xWO3 + (30 − x)As2O3 + 70TeO2 (where x = 10, 20, 30 mol%) glasses by UV–vis, Raman, IR and DSC Studies</atitle><jtitle>Optik (Stuttgart)</jtitle><date>2020-12</date><risdate>2020</risdate><volume>224</volume><spage>165450</spage><pages>165450-</pages><artnum>165450</artnum><issn>0030-4026</issn><eissn>1618-1336</eissn><abstract>•In corporation of WO3 enhances the thermal stability against the devitrification.•The optical transmittance of glass enhances, that could be helpful in manufacturing the optical fiber cable.•The IR and Raman spectra of present glass system reveals that the W4+ state is less in concentration than the W6+ state.•This seldom coordinate state of WO3 in the present glass system supports the network stability.
Optical, Structural and Thermal properties of xWO3 + (30 − x)As2O3 + 70TeO2 glass system (where x = 10, 20, & 30 mol%) have been investigated by Optical absorption, Raman & FT-IR, and DSC studies respectively. Physical properties such as, density (ρ), molar volume (Vm), oxygen packing density (OPD), and oxygen molar volume (Vo) are determined for all the glass samples. Density and oxygen packing density (OPD) of glasses have been increasing monotonically with increase in WO3 content in the range 6.52–6.99 g m/cc, and 85.951–88.690 mol/l respectively. These values are correlated with molar volume and oxygen molar volume that are decreasing linearly with increase in WO3 content (10–30 mol%) falling in the range 26.745–25.932 cm3/mol and 11.628–11.274 cm3/mol respectively. The optical transitions and electronic band structure has also been investigated through optical absorption spectra. The fundamental absorption edge is measured in the short wavelength of the visible region, that shows, glasses exhibits the redshift (449 → 483 nm), at photon energy in the range 2.89–2.70 eV for direct allowed transitions. Raman and IR spectral studies reveals that the glass network consists of TeO4 (tbp), TeO3/TeO3+1 (tp), WO6 (octahedral), WO4 (tetrahedra) and AsO3 groups as basic structural units. Thermal behavior of the glasses was studied in terms of glass transition temperature (Tg), onset crystallization (To), peak crystallization (Tp) temperatures, and the thermal stability (ΔT) from DSC thermogrms. In the present glass system, it is found that the glass transition temperature (Tg = 331 → 341 → 353 °C) and thermal stability (ΔT = 56 → 93 → 120 °C) both increases linearly with increase in concentration of WO3 (10, 20, & 30 mol%).</abstract><pub>Elsevier GmbH</pub><doi>10.1016/j.ijleo.2020.165450</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0030-4026 |
ispartof | Optik (Stuttgart), 2020-12, Vol.224, p.165450, Article 165450 |
issn | 0030-4026 1618-1336 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_ijleo_2020_165450 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | DSC Optical properties Physical properties Raman Tellurite glass |
title | Physical, Optical, Structural and Thermal Studies of xWO3 + (30 − x)As2O3 + 70TeO2 (where x = 10, 20, 30 mol%) glasses by UV–vis, Raman, IR and DSC Studies |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T13%3A34%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physical,%20Optical,%20Structural%20and%20Thermal%20Studies%20of%20xWO3%E2%80%AF+%E2%80%AF(30%E2%80%AF%E2%88%92%E2%80%AFx)As2O3%E2%80%AF+%E2%80%AF70TeO2%20(where%20x%E2%80%AF=%E2%80%AF10,%2020,%2030%E2%80%AFmol%25)%20glasses%20by%20UV%E2%80%93vis,%20Raman,%20IR%20and%20DSC%20Studies&rft.jtitle=Optik%20(Stuttgart)&rft.au=Siripuram,%20Rajesh&rft.date=2020-12&rft.volume=224&rft.spage=165450&rft.pages=165450-&rft.artnum=165450&rft.issn=0030-4026&rft.eissn=1618-1336&rft_id=info:doi/10.1016/j.ijleo.2020.165450&rft_dat=%3Celsevier_cross%3ES0030402620312869%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c218t-4d3ba1c1dd85d6487bf0fb3e333af5cbe3214f23d4ba8ad145486b4a043db7ef3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |