Loading…

Laguerre-Gaussian beams as an optical pipeline: Optical forces and intra-fluid micro particle movements

In this study, particle motion with low thermal conductivity, such as carbon nanoclasts aerosols, is simulated when irradiated by an optical tube such as Laguerre- Gaussian and Bessel-Gaussian beams. Opticall forces due to light radiation to the particle include the radiation and photophoretic force...

Full description

Saved in:
Bibliographic Details
Published in:Optik (Stuttgart) 2021-05, Vol.234, p.166591, Article 166591
Main Authors: Mousavi, Amin, Hosseinibalam, Fahimeh, Hassanzadeh, Smaeyl
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this study, particle motion with low thermal conductivity, such as carbon nanoclasts aerosols, is simulated when irradiated by an optical tube such as Laguerre- Gaussian and Bessel-Gaussian beams. Opticall forces due to light radiation to the particle include the radiation and photophoretic forces that result from the transmission of the photon's momentum to the particle and its surroundings. Here, these forces are generally calculated for radiation an m-charge Laguerre-Gaussian beam, LG0m, on a spherical micro particle. Longitudinal and transverse component of radiation and photophoretic forces for radiation of LG0m with m = 0, 1 and 2 are derived. LG0m beams have a ring-shaped intensity profile when m > 0. The particles can be guided into these pipeline beams on the optical axis based on the particle's size and the beam properties. The optical guidance can be in the direction of the beam or opposite. Some particles are also trapped completely.
ISSN:0030-4026
1618-1336
DOI:10.1016/j.ijleo.2021.166591