Loading…
Remarkable efficiency improvement in AlGaN-based ultraviolet light-emitting diodes using graded last quantum barrier
The optical properties of AlGaN-based deep ultraviolet light-emitting diodes (DUV LED) with step-graded AlInGaN last quantum barrier (LQB) are numerically studied. In contrast to conventional LQB, step-quaternary-graded last quantum barrier (QGLQB) exhibits enhancement in the internal quantum effici...
Saved in:
Published in: | Optik (Stuttgart) 2021-12, Vol.248, p.168212, Article 168212 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The optical properties of AlGaN-based deep ultraviolet light-emitting diodes (DUV LED) with step-graded AlInGaN last quantum barrier (LQB) are numerically studied. In contrast to conventional LQB, step-quaternary-graded last quantum barrier (QGLQB) exhibits enhancement in the internal quantum efficiency (IQE). This is attributed to the reduction in lattice mismatch, leading to suppressed leakage of electrons and enhanced hole transportation into the multiquantum well (MQW). Electrons are enhanced by ~124% whereas holes are enhanced by ~22% in the QGLQB structure. Moreover, the efficiency droop is also reduced from ~77% (conventional structure) to ~8% (proposed structure). |
---|---|
ISSN: | 0030-4026 1618-1336 |
DOI: | 10.1016/j.ijleo.2021.168212 |