Loading…

Complex dynamics of perturbed solitary waves in a nonlinear saturable medium: A Melnikov approach

To investigate the nonlinear dynamics of a periodically perturbed second-order ordinary differential equation obtained by using traveling wave variables in the model of pulse propagation in a nonlinear medium with saturation. The Melnikov function of the investigated system along its homoclinic and...

Full description

Saved in:
Bibliographic Details
Published in:Optik (Stuttgart) 2022-09, Vol.265, p.169454, Article 169454
Main Authors: Kudryashov, N.A., Lavrova, S.F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c233t-26bbc1a2985777a54f451a63366db69680267d0bc8848ffbba06d20150b65c793
cites cdi_FETCH-LOGICAL-c233t-26bbc1a2985777a54f451a63366db69680267d0bc8848ffbba06d20150b65c793
container_end_page
container_issue
container_start_page 169454
container_title Optik (Stuttgart)
container_volume 265
creator Kudryashov, N.A.
Lavrova, S.F.
description To investigate the nonlinear dynamics of a periodically perturbed second-order ordinary differential equation obtained by using traveling wave variables in the model of pulse propagation in a nonlinear medium with saturation. The Melnikov function of the investigated system along its homoclinic and heteroclinic orbits is constructed. It is established that the necessary condition for the occurrence of Melnikov chaos is always met. By analogy with the well-known Duffing equation, a damping term is added to the system to control chaos. Using the numerical calculation of the Melnikov integrals, conditions are found on the parameters of the new system for which the Melnikov chaos takes place. To verify the results obtained by the Melnikov method, attraction basins of the system are constructed. The results obtained by the Melnikov method go in agreement with the structure of the constructed basin boundaries.
doi_str_mv 10.1016/j.ijleo.2022.169454
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_ijleo_2022_169454</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0030402622007690</els_id><sourcerecordid>S0030402622007690</sourcerecordid><originalsourceid>FETCH-LOGICAL-c233t-26bbc1a2985777a54f451a63366db69680267d0bc8848ffbba06d20150b65c793</originalsourceid><addsrcrecordid>eNp9kMtOwzAQAC0EEqXwBVz8AwlrJ7ETJA5VxUsq4gJny3Y2wiGJIzst9O9JKWdOe9lZzQ4h1wxSBkzctKlrO_QpB85TJqq8yE_IgglWJizLxClZAGSQ5MDFObmIsQUAKUEuiF77fuzwm9b7QffORuobOmKYtsFgTaPv3KTDnn7pHUbqBqrp4IfODagDjXpe06ZD2mPttv0tXdEX7Ab36XdUj2Pw2n5ckrNGdxGv_uaSvD_cv62fks3r4_N6tUksz7Ip4cIYyzSvykJKqYu8yQumxWwvaiMqUc7usgZjyzIvm8YYDaLmwAoworCyypYkO961wccYsFFjcP3srhioQyXVqt9K6lBJHSvN1N2Rwllt5zCoaB0Odv4noJ1U7d2__A_jDnIk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Complex dynamics of perturbed solitary waves in a nonlinear saturable medium: A Melnikov approach</title><source>ScienceDirect Freedom Collection</source><creator>Kudryashov, N.A. ; Lavrova, S.F.</creator><creatorcontrib>Kudryashov, N.A. ; Lavrova, S.F.</creatorcontrib><description>To investigate the nonlinear dynamics of a periodically perturbed second-order ordinary differential equation obtained by using traveling wave variables in the model of pulse propagation in a nonlinear medium with saturation. The Melnikov function of the investigated system along its homoclinic and heteroclinic orbits is constructed. It is established that the necessary condition for the occurrence of Melnikov chaos is always met. By analogy with the well-known Duffing equation, a damping term is added to the system to control chaos. Using the numerical calculation of the Melnikov integrals, conditions are found on the parameters of the new system for which the Melnikov chaos takes place. To verify the results obtained by the Melnikov method, attraction basins of the system are constructed. The results obtained by the Melnikov method go in agreement with the structure of the constructed basin boundaries.</description><identifier>ISSN: 0030-4026</identifier><identifier>EISSN: 1618-1336</identifier><identifier>DOI: 10.1016/j.ijleo.2022.169454</identifier><language>eng</language><publisher>Elsevier GmbH</publisher><subject>Chaos ; Fractal basin boundaries ; Generalized Schrödinger equation ; Melnikov method</subject><ispartof>Optik (Stuttgart), 2022-09, Vol.265, p.169454, Article 169454</ispartof><rights>2022 Elsevier GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c233t-26bbc1a2985777a54f451a63366db69680267d0bc8848ffbba06d20150b65c793</citedby><cites>FETCH-LOGICAL-c233t-26bbc1a2985777a54f451a63366db69680267d0bc8848ffbba06d20150b65c793</cites><orcidid>0000-0002-9112-9090 ; 0000-0001-5926-9715</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kudryashov, N.A.</creatorcontrib><creatorcontrib>Lavrova, S.F.</creatorcontrib><title>Complex dynamics of perturbed solitary waves in a nonlinear saturable medium: A Melnikov approach</title><title>Optik (Stuttgart)</title><description>To investigate the nonlinear dynamics of a periodically perturbed second-order ordinary differential equation obtained by using traveling wave variables in the model of pulse propagation in a nonlinear medium with saturation. The Melnikov function of the investigated system along its homoclinic and heteroclinic orbits is constructed. It is established that the necessary condition for the occurrence of Melnikov chaos is always met. By analogy with the well-known Duffing equation, a damping term is added to the system to control chaos. Using the numerical calculation of the Melnikov integrals, conditions are found on the parameters of the new system for which the Melnikov chaos takes place. To verify the results obtained by the Melnikov method, attraction basins of the system are constructed. The results obtained by the Melnikov method go in agreement with the structure of the constructed basin boundaries.</description><subject>Chaos</subject><subject>Fractal basin boundaries</subject><subject>Generalized Schrödinger equation</subject><subject>Melnikov method</subject><issn>0030-4026</issn><issn>1618-1336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQAC0EEqXwBVz8AwlrJ7ETJA5VxUsq4gJny3Y2wiGJIzst9O9JKWdOe9lZzQ4h1wxSBkzctKlrO_QpB85TJqq8yE_IgglWJizLxClZAGSQ5MDFObmIsQUAKUEuiF77fuzwm9b7QffORuobOmKYtsFgTaPv3KTDnn7pHUbqBqrp4IfODagDjXpe06ZD2mPttv0tXdEX7Ab36XdUj2Pw2n5ckrNGdxGv_uaSvD_cv62fks3r4_N6tUksz7Ip4cIYyzSvykJKqYu8yQumxWwvaiMqUc7usgZjyzIvm8YYDaLmwAoworCyypYkO961wccYsFFjcP3srhioQyXVqt9K6lBJHSvN1N2Rwllt5zCoaB0Odv4noJ1U7d2__A_jDnIk</recordid><startdate>202209</startdate><enddate>202209</enddate><creator>Kudryashov, N.A.</creator><creator>Lavrova, S.F.</creator><general>Elsevier GmbH</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9112-9090</orcidid><orcidid>https://orcid.org/0000-0001-5926-9715</orcidid></search><sort><creationdate>202209</creationdate><title>Complex dynamics of perturbed solitary waves in a nonlinear saturable medium: A Melnikov approach</title><author>Kudryashov, N.A. ; Lavrova, S.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c233t-26bbc1a2985777a54f451a63366db69680267d0bc8848ffbba06d20150b65c793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Chaos</topic><topic>Fractal basin boundaries</topic><topic>Generalized Schrödinger equation</topic><topic>Melnikov method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kudryashov, N.A.</creatorcontrib><creatorcontrib>Lavrova, S.F.</creatorcontrib><collection>CrossRef</collection><jtitle>Optik (Stuttgart)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kudryashov, N.A.</au><au>Lavrova, S.F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complex dynamics of perturbed solitary waves in a nonlinear saturable medium: A Melnikov approach</atitle><jtitle>Optik (Stuttgart)</jtitle><date>2022-09</date><risdate>2022</risdate><volume>265</volume><spage>169454</spage><pages>169454-</pages><artnum>169454</artnum><issn>0030-4026</issn><eissn>1618-1336</eissn><abstract>To investigate the nonlinear dynamics of a periodically perturbed second-order ordinary differential equation obtained by using traveling wave variables in the model of pulse propagation in a nonlinear medium with saturation. The Melnikov function of the investigated system along its homoclinic and heteroclinic orbits is constructed. It is established that the necessary condition for the occurrence of Melnikov chaos is always met. By analogy with the well-known Duffing equation, a damping term is added to the system to control chaos. Using the numerical calculation of the Melnikov integrals, conditions are found on the parameters of the new system for which the Melnikov chaos takes place. To verify the results obtained by the Melnikov method, attraction basins of the system are constructed. The results obtained by the Melnikov method go in agreement with the structure of the constructed basin boundaries.</abstract><pub>Elsevier GmbH</pub><doi>10.1016/j.ijleo.2022.169454</doi><orcidid>https://orcid.org/0000-0002-9112-9090</orcidid><orcidid>https://orcid.org/0000-0001-5926-9715</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0030-4026
ispartof Optik (Stuttgart), 2022-09, Vol.265, p.169454, Article 169454
issn 0030-4026
1618-1336
language eng
recordid cdi_crossref_primary_10_1016_j_ijleo_2022_169454
source ScienceDirect Freedom Collection
subjects Chaos
Fractal basin boundaries
Generalized Schrödinger equation
Melnikov method
title Complex dynamics of perturbed solitary waves in a nonlinear saturable medium: A Melnikov approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A36%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complex%20dynamics%20of%20perturbed%20solitary%20waves%20in%20a%20nonlinear%20saturable%20medium:%20A%20Melnikov%20approach&rft.jtitle=Optik%20(Stuttgart)&rft.au=Kudryashov,%20N.A.&rft.date=2022-09&rft.volume=265&rft.spage=169454&rft.pages=169454-&rft.artnum=169454&rft.issn=0030-4026&rft.eissn=1618-1336&rft_id=info:doi/10.1016/j.ijleo.2022.169454&rft_dat=%3Celsevier_cross%3ES0030402622007690%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c233t-26bbc1a2985777a54f451a63366db69680267d0bc8848ffbba06d20150b65c793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true