Loading…
Physics-informed Neural Network method for the Modified Nonlinear Schrödinger equation
In this paper, we apply the Physics-informed Neural Network (PINN) method to investigate some nonlinear wave solutions of the Modified Nonlinear Schrödinger (MNLS) equation, which characterizes the ultrashort pulse propagation well in optical fibers. We generate the training dataset by the Latin Hyp...
Saved in:
Published in: | Optik (Stuttgart) 2023-05, Vol.279, p.170739, Article 170739 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c218t-6d9f2321b12daa22edddac1486ab693c1d523e6e84f08743c53fbef7330222f53 |
---|---|
cites | cdi_FETCH-LOGICAL-c218t-6d9f2321b12daa22edddac1486ab693c1d523e6e84f08743c53fbef7330222f53 |
container_end_page | |
container_issue | |
container_start_page | 170739 |
container_title | Optik (Stuttgart) |
container_volume | 279 |
creator | Yuan, Wen-Xuan Guo, Rui Gao, Yi-Ning |
description | In this paper, we apply the Physics-informed Neural Network (PINN) method to investigate some nonlinear wave solutions of the Modified Nonlinear Schrödinger (MNLS) equation, which characterizes the ultrashort pulse propagation well in optical fibers. We generate the training dataset by the Latin Hypercube Sampling (LHS) method under Dirichlet boundary conditions. We use the Xavier initialization method to generate the parameters of the neural network, and then use the Adam algorithm to optimize them. Finally, we derive the data-driven solutions of single soliton solution, double solitons solution, single breather solution, double breather solution, first-order rogue wave and second-order rogue wave solutions for the MNLS equation. Through loss and L2 error of the experimental results, the PINN method has been verified to have prominent stability and effectiveness. |
doi_str_mv | 10.1016/j.ijleo.2023.170739 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_ijleo_2023_170739</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0030402623002358</els_id><sourcerecordid>S0030402623002358</sourcerecordid><originalsourceid>FETCH-LOGICAL-c218t-6d9f2321b12daa22edddac1486ab693c1d523e6e84f08743c53fbef7330222f53</originalsourceid><addsrcrecordid>eNp9kEtOwzAURS0EEqWwAibeQMKznTrpgAGq-EnlIwFiaLn2M3FIY7BTUDfGBtgYKWXM6A7ePVdPh5BjBjkDJk-a3DcthpwDFzkroRTTHTJiklUZE0LukhGAgKwALvfJQUoNAJRDbUSe7-t18iZlvnMhLtHSW1xF3Q7Rf4b4SpfY18HS4Uj7GulNsN75TS10re9QR_pg6vj9ZX33gpHi-0r3PnSHZM_pNuHRX47J08X54-wqm99dXs_O5pnhrOozaaeOC84WjFutOUdrrTasqKReyKkwzE64QIlV4aAqC2Emwi3QlUIA59xNxJiI7a6JIaWITr1Fv9RxrRiojRvVqF83auNGbd0M1OmWwuG1D49RJeOxM2h9RNMrG_y__A8VDnAg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Physics-informed Neural Network method for the Modified Nonlinear Schrödinger equation</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Yuan, Wen-Xuan ; Guo, Rui ; Gao, Yi-Ning</creator><creatorcontrib>Yuan, Wen-Xuan ; Guo, Rui ; Gao, Yi-Ning</creatorcontrib><description>In this paper, we apply the Physics-informed Neural Network (PINN) method to investigate some nonlinear wave solutions of the Modified Nonlinear Schrödinger (MNLS) equation, which characterizes the ultrashort pulse propagation well in optical fibers. We generate the training dataset by the Latin Hypercube Sampling (LHS) method under Dirichlet boundary conditions. We use the Xavier initialization method to generate the parameters of the neural network, and then use the Adam algorithm to optimize them. Finally, we derive the data-driven solutions of single soliton solution, double solitons solution, single breather solution, double breather solution, first-order rogue wave and second-order rogue wave solutions for the MNLS equation. Through loss and L2 error of the experimental results, the PINN method has been verified to have prominent stability and effectiveness.</description><identifier>ISSN: 0030-4026</identifier><identifier>EISSN: 1618-1336</identifier><identifier>DOI: 10.1016/j.ijleo.2023.170739</identifier><language>eng</language><publisher>Elsevier GmbH</publisher><subject>Neural network ; The modified nonlinear Schrödinger equation ; The PINN method</subject><ispartof>Optik (Stuttgart), 2023-05, Vol.279, p.170739, Article 170739</ispartof><rights>2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c218t-6d9f2321b12daa22edddac1486ab693c1d523e6e84f08743c53fbef7330222f53</citedby><cites>FETCH-LOGICAL-c218t-6d9f2321b12daa22edddac1486ab693c1d523e6e84f08743c53fbef7330222f53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Yuan, Wen-Xuan</creatorcontrib><creatorcontrib>Guo, Rui</creatorcontrib><creatorcontrib>Gao, Yi-Ning</creatorcontrib><title>Physics-informed Neural Network method for the Modified Nonlinear Schrödinger equation</title><title>Optik (Stuttgart)</title><description>In this paper, we apply the Physics-informed Neural Network (PINN) method to investigate some nonlinear wave solutions of the Modified Nonlinear Schrödinger (MNLS) equation, which characterizes the ultrashort pulse propagation well in optical fibers. We generate the training dataset by the Latin Hypercube Sampling (LHS) method under Dirichlet boundary conditions. We use the Xavier initialization method to generate the parameters of the neural network, and then use the Adam algorithm to optimize them. Finally, we derive the data-driven solutions of single soliton solution, double solitons solution, single breather solution, double breather solution, first-order rogue wave and second-order rogue wave solutions for the MNLS equation. Through loss and L2 error of the experimental results, the PINN method has been verified to have prominent stability and effectiveness.</description><subject>Neural network</subject><subject>The modified nonlinear Schrödinger equation</subject><subject>The PINN method</subject><issn>0030-4026</issn><issn>1618-1336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEtOwzAURS0EEqWwAibeQMKznTrpgAGq-EnlIwFiaLn2M3FIY7BTUDfGBtgYKWXM6A7ePVdPh5BjBjkDJk-a3DcthpwDFzkroRTTHTJiklUZE0LukhGAgKwALvfJQUoNAJRDbUSe7-t18iZlvnMhLtHSW1xF3Q7Rf4b4SpfY18HS4Uj7GulNsN75TS10re9QR_pg6vj9ZX33gpHi-0r3PnSHZM_pNuHRX47J08X54-wqm99dXs_O5pnhrOozaaeOC84WjFutOUdrrTasqKReyKkwzE64QIlV4aAqC2Emwi3QlUIA59xNxJiI7a6JIaWITr1Fv9RxrRiojRvVqF83auNGbd0M1OmWwuG1D49RJeOxM2h9RNMrG_y__A8VDnAg</recordid><startdate>202305</startdate><enddate>202305</enddate><creator>Yuan, Wen-Xuan</creator><creator>Guo, Rui</creator><creator>Gao, Yi-Ning</creator><general>Elsevier GmbH</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202305</creationdate><title>Physics-informed Neural Network method for the Modified Nonlinear Schrödinger equation</title><author>Yuan, Wen-Xuan ; Guo, Rui ; Gao, Yi-Ning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c218t-6d9f2321b12daa22edddac1486ab693c1d523e6e84f08743c53fbef7330222f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Neural network</topic><topic>The modified nonlinear Schrödinger equation</topic><topic>The PINN method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Wen-Xuan</creatorcontrib><creatorcontrib>Guo, Rui</creatorcontrib><creatorcontrib>Gao, Yi-Ning</creatorcontrib><collection>CrossRef</collection><jtitle>Optik (Stuttgart)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Wen-Xuan</au><au>Guo, Rui</au><au>Gao, Yi-Ning</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physics-informed Neural Network method for the Modified Nonlinear Schrödinger equation</atitle><jtitle>Optik (Stuttgart)</jtitle><date>2023-05</date><risdate>2023</risdate><volume>279</volume><spage>170739</spage><pages>170739-</pages><artnum>170739</artnum><issn>0030-4026</issn><eissn>1618-1336</eissn><abstract>In this paper, we apply the Physics-informed Neural Network (PINN) method to investigate some nonlinear wave solutions of the Modified Nonlinear Schrödinger (MNLS) equation, which characterizes the ultrashort pulse propagation well in optical fibers. We generate the training dataset by the Latin Hypercube Sampling (LHS) method under Dirichlet boundary conditions. We use the Xavier initialization method to generate the parameters of the neural network, and then use the Adam algorithm to optimize them. Finally, we derive the data-driven solutions of single soliton solution, double solitons solution, single breather solution, double breather solution, first-order rogue wave and second-order rogue wave solutions for the MNLS equation. Through loss and L2 error of the experimental results, the PINN method has been verified to have prominent stability and effectiveness.</abstract><pub>Elsevier GmbH</pub><doi>10.1016/j.ijleo.2023.170739</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0030-4026 |
ispartof | Optik (Stuttgart), 2023-05, Vol.279, p.170739, Article 170739 |
issn | 0030-4026 1618-1336 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_ijleo_2023_170739 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Neural network The modified nonlinear Schrödinger equation The PINN method |
title | Physics-informed Neural Network method for the Modified Nonlinear Schrödinger equation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T03%3A13%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physics-informed%20Neural%20Network%20method%20for%20the%20Modified%20Nonlinear%20Schr%C3%B6dinger%20equation&rft.jtitle=Optik%20(Stuttgart)&rft.au=Yuan,%20Wen-Xuan&rft.date=2023-05&rft.volume=279&rft.spage=170739&rft.pages=170739-&rft.artnum=170739&rft.issn=0030-4026&rft.eissn=1618-1336&rft_id=info:doi/10.1016/j.ijleo.2023.170739&rft_dat=%3Celsevier_cross%3ES0030402623002358%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c218t-6d9f2321b12daa22edddac1486ab693c1d523e6e84f08743c53fbef7330222f53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |