Loading…
A modified scaling law for stiffness of nanoporous materials based on gyroid cell model
•A continuum model is developed for predicting stiffness of a gyroid unit cell.•The modified scaling law accounts stretching and bending deformation modes.•The deformation is a mixture of bending and stretching at low relative density.•The deformation is stretching-dominant at high relative density....
Saved in:
Published in: | International journal of mechanical sciences 2020-01, Vol.166, p.105223, Article 105223 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c360t-d544a570a9b56495b74f0ced19c182cdc742fa15ef053f07645909bd01eb5fe93 |
---|---|
cites | cdi_FETCH-LOGICAL-c360t-d544a570a9b56495b74f0ced19c182cdc742fa15ef053f07645909bd01eb5fe93 |
container_end_page | |
container_issue | |
container_start_page | 105223 |
container_title | International journal of mechanical sciences |
container_volume | 166 |
creator | Liu, Haomin Abdolrahim, Niaz |
description | •A continuum model is developed for predicting stiffness of a gyroid unit cell.•The modified scaling law accounts stretching and bending deformation modes.•The deformation is a mixture of bending and stretching at low relative density.•The deformation is stretching-dominant at high relative density.
Gibson-Ashby model can't well describe the experimental stiffness of nanoporous materials as the ligament size decreases to the nanoscale. We theoretically developed a refined continuum model based on a cubic, periodic arrangement of a gyroid unit cell with three-fold node connectivity. Our modified scaling law is given as E/Es = C1ϕ + C2ϕ2, where C1 and C2 account for the stretching and bending deformation mode, respectively. We found a good agreement between the simulation and theoretical calculations of the stiffness. We identified other morphological factors such as ligament aspect ratio and node to ligament volume ratio that affect the deformation behavior of the gyroid unit cell besides the relative density. A mixture of bending and stretching modes is observed in the gyroid unit cell under uniaxial tensile loading. We observed a transition from bending-stretching to stretching-dominant deformation by increasing the relative density of the gyroid unit cell. |
doi_str_mv | 10.1016/j.ijmecsci.2019.105223 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_ijmecsci_2019_105223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020740319329339</els_id><sourcerecordid>S0020740319329339</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-d544a570a9b56495b74f0ced19c182cdc742fa15ef053f07645909bd01eb5fe93</originalsourceid><addsrcrecordid>eNqFkF9LwzAUxYMoOKdfQfIFWm_Spl3eHMN_MPBF8TGkyc1IaZuRVGXf3ozps08XDuece_gRcsugZMCau770_YgmGV9yYDKLgvPqjCzYqpUFZw0_JwsADkVbQ3VJrlLqAVgLolqQjzUdg_XOo6XJ6MFPOzrob-pCpGn2zk2YEg2OTnoK-xDDZ6KjnjF6PSTa6ZRzYaK7QwzeUoPDcOzD4ZpcuOzAm9-7JO-PD2-b52L7-vSyWW8LUzUwF1bUtRYtaNmJppaia2sHBi2Thq24saatudNMoMtrHbRNLSTIzgLDTjiU1ZI0p14TQ0oRndpHP-p4UAzUEY_q1R8edcSjTnhy8P4UxLzuy2NU2YFT_u0jmlnZ4P-r-AFVq3Ju</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A modified scaling law for stiffness of nanoporous materials based on gyroid cell model</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Liu, Haomin ; Abdolrahim, Niaz</creator><creatorcontrib>Liu, Haomin ; Abdolrahim, Niaz</creatorcontrib><description>•A continuum model is developed for predicting stiffness of a gyroid unit cell.•The modified scaling law accounts stretching and bending deformation modes.•The deformation is a mixture of bending and stretching at low relative density.•The deformation is stretching-dominant at high relative density.
Gibson-Ashby model can't well describe the experimental stiffness of nanoporous materials as the ligament size decreases to the nanoscale. We theoretically developed a refined continuum model based on a cubic, periodic arrangement of a gyroid unit cell with three-fold node connectivity. Our modified scaling law is given as E/Es = C1ϕ + C2ϕ2, where C1 and C2 account for the stretching and bending deformation mode, respectively. We found a good agreement between the simulation and theoretical calculations of the stiffness. We identified other morphological factors such as ligament aspect ratio and node to ligament volume ratio that affect the deformation behavior of the gyroid unit cell besides the relative density. A mixture of bending and stretching modes is observed in the gyroid unit cell under uniaxial tensile loading. We observed a transition from bending-stretching to stretching-dominant deformation by increasing the relative density of the gyroid unit cell.</description><identifier>ISSN: 0020-7403</identifier><identifier>EISSN: 1879-2162</identifier><identifier>DOI: 10.1016/j.ijmecsci.2019.105223</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Continuum mechanics model ; Deformation ; Elastic properties ; Nanoporous ; Scaling law</subject><ispartof>International journal of mechanical sciences, 2020-01, Vol.166, p.105223, Article 105223</ispartof><rights>2019 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-d544a570a9b56495b74f0ced19c182cdc742fa15ef053f07645909bd01eb5fe93</citedby><cites>FETCH-LOGICAL-c360t-d544a570a9b56495b74f0ced19c182cdc742fa15ef053f07645909bd01eb5fe93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Liu, Haomin</creatorcontrib><creatorcontrib>Abdolrahim, Niaz</creatorcontrib><title>A modified scaling law for stiffness of nanoporous materials based on gyroid cell model</title><title>International journal of mechanical sciences</title><description>•A continuum model is developed for predicting stiffness of a gyroid unit cell.•The modified scaling law accounts stretching and bending deformation modes.•The deformation is a mixture of bending and stretching at low relative density.•The deformation is stretching-dominant at high relative density.
Gibson-Ashby model can't well describe the experimental stiffness of nanoporous materials as the ligament size decreases to the nanoscale. We theoretically developed a refined continuum model based on a cubic, periodic arrangement of a gyroid unit cell with three-fold node connectivity. Our modified scaling law is given as E/Es = C1ϕ + C2ϕ2, where C1 and C2 account for the stretching and bending deformation mode, respectively. We found a good agreement between the simulation and theoretical calculations of the stiffness. We identified other morphological factors such as ligament aspect ratio and node to ligament volume ratio that affect the deformation behavior of the gyroid unit cell besides the relative density. A mixture of bending and stretching modes is observed in the gyroid unit cell under uniaxial tensile loading. We observed a transition from bending-stretching to stretching-dominant deformation by increasing the relative density of the gyroid unit cell.</description><subject>Continuum mechanics model</subject><subject>Deformation</subject><subject>Elastic properties</subject><subject>Nanoporous</subject><subject>Scaling law</subject><issn>0020-7403</issn><issn>1879-2162</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkF9LwzAUxYMoOKdfQfIFWm_Spl3eHMN_MPBF8TGkyc1IaZuRVGXf3ozps08XDuece_gRcsugZMCau770_YgmGV9yYDKLgvPqjCzYqpUFZw0_JwsADkVbQ3VJrlLqAVgLolqQjzUdg_XOo6XJ6MFPOzrob-pCpGn2zk2YEg2OTnoK-xDDZ6KjnjF6PSTa6ZRzYaK7QwzeUoPDcOzD4ZpcuOzAm9-7JO-PD2-b52L7-vSyWW8LUzUwF1bUtRYtaNmJppaia2sHBi2Thq24saatudNMoMtrHbRNLSTIzgLDTjiU1ZI0p14TQ0oRndpHP-p4UAzUEY_q1R8edcSjTnhy8P4UxLzuy2NU2YFT_u0jmlnZ4P-r-AFVq3Ju</recordid><startdate>20200115</startdate><enddate>20200115</enddate><creator>Liu, Haomin</creator><creator>Abdolrahim, Niaz</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200115</creationdate><title>A modified scaling law for stiffness of nanoporous materials based on gyroid cell model</title><author>Liu, Haomin ; Abdolrahim, Niaz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-d544a570a9b56495b74f0ced19c182cdc742fa15ef053f07645909bd01eb5fe93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Continuum mechanics model</topic><topic>Deformation</topic><topic>Elastic properties</topic><topic>Nanoporous</topic><topic>Scaling law</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Haomin</creatorcontrib><creatorcontrib>Abdolrahim, Niaz</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of mechanical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Haomin</au><au>Abdolrahim, Niaz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A modified scaling law for stiffness of nanoporous materials based on gyroid cell model</atitle><jtitle>International journal of mechanical sciences</jtitle><date>2020-01-15</date><risdate>2020</risdate><volume>166</volume><spage>105223</spage><pages>105223-</pages><artnum>105223</artnum><issn>0020-7403</issn><eissn>1879-2162</eissn><abstract>•A continuum model is developed for predicting stiffness of a gyroid unit cell.•The modified scaling law accounts stretching and bending deformation modes.•The deformation is a mixture of bending and stretching at low relative density.•The deformation is stretching-dominant at high relative density.
Gibson-Ashby model can't well describe the experimental stiffness of nanoporous materials as the ligament size decreases to the nanoscale. We theoretically developed a refined continuum model based on a cubic, periodic arrangement of a gyroid unit cell with three-fold node connectivity. Our modified scaling law is given as E/Es = C1ϕ + C2ϕ2, where C1 and C2 account for the stretching and bending deformation mode, respectively. We found a good agreement between the simulation and theoretical calculations of the stiffness. We identified other morphological factors such as ligament aspect ratio and node to ligament volume ratio that affect the deformation behavior of the gyroid unit cell besides the relative density. A mixture of bending and stretching modes is observed in the gyroid unit cell under uniaxial tensile loading. We observed a transition from bending-stretching to stretching-dominant deformation by increasing the relative density of the gyroid unit cell.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ijmecsci.2019.105223</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7403 |
ispartof | International journal of mechanical sciences, 2020-01, Vol.166, p.105223, Article 105223 |
issn | 0020-7403 1879-2162 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_ijmecsci_2019_105223 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Continuum mechanics model Deformation Elastic properties Nanoporous Scaling law |
title | A modified scaling law for stiffness of nanoporous materials based on gyroid cell model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T09%3A36%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20modified%20scaling%20law%20for%20stiffness%20of%20nanoporous%20materials%20based%20on%20gyroid%20cell%20model&rft.jtitle=International%20journal%20of%20mechanical%20sciences&rft.au=Liu,%20Haomin&rft.date=2020-01-15&rft.volume=166&rft.spage=105223&rft.pages=105223-&rft.artnum=105223&rft.issn=0020-7403&rft.eissn=1879-2162&rft_id=info:doi/10.1016/j.ijmecsci.2019.105223&rft_dat=%3Celsevier_cross%3ES0020740319329339%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c360t-d544a570a9b56495b74f0ced19c182cdc742fa15ef053f07645909bd01eb5fe93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |