Loading…

A modified scaling law for stiffness of nanoporous materials based on gyroid cell model

•A continuum model is developed for predicting stiffness of a gyroid unit cell.•The modified scaling law accounts stretching and bending deformation modes.•The deformation is a mixture of bending and stretching at low relative density.•The deformation is stretching-dominant at high relative density....

Full description

Saved in:
Bibliographic Details
Published in:International journal of mechanical sciences 2020-01, Vol.166, p.105223, Article 105223
Main Authors: Liu, Haomin, Abdolrahim, Niaz
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c360t-d544a570a9b56495b74f0ced19c182cdc742fa15ef053f07645909bd01eb5fe93
cites cdi_FETCH-LOGICAL-c360t-d544a570a9b56495b74f0ced19c182cdc742fa15ef053f07645909bd01eb5fe93
container_end_page
container_issue
container_start_page 105223
container_title International journal of mechanical sciences
container_volume 166
creator Liu, Haomin
Abdolrahim, Niaz
description •A continuum model is developed for predicting stiffness of a gyroid unit cell.•The modified scaling law accounts stretching and bending deformation modes.•The deformation is a mixture of bending and stretching at low relative density.•The deformation is stretching-dominant at high relative density. Gibson-Ashby model can't well describe the experimental stiffness of nanoporous materials as the ligament size decreases to the nanoscale. We theoretically developed a refined continuum model based on a cubic, periodic arrangement of a gyroid unit cell with three-fold node connectivity. Our modified scaling law is given as E/Es = C1ϕ + C2ϕ2, where C1 and C2 account for the stretching and bending deformation mode, respectively. We found a good agreement between the simulation and theoretical calculations of the stiffness. We identified other morphological factors such as ligament aspect ratio and node to ligament volume ratio that affect the deformation behavior of the gyroid unit cell besides the relative density. A mixture of bending and stretching modes is observed in the gyroid unit cell under uniaxial tensile loading. We observed a transition from bending-stretching to stretching-dominant deformation by increasing the relative density of the gyroid unit cell.
doi_str_mv 10.1016/j.ijmecsci.2019.105223
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_ijmecsci_2019_105223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020740319329339</els_id><sourcerecordid>S0020740319329339</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-d544a570a9b56495b74f0ced19c182cdc742fa15ef053f07645909bd01eb5fe93</originalsourceid><addsrcrecordid>eNqFkF9LwzAUxYMoOKdfQfIFWm_Spl3eHMN_MPBF8TGkyc1IaZuRVGXf3ozps08XDuece_gRcsugZMCau770_YgmGV9yYDKLgvPqjCzYqpUFZw0_JwsADkVbQ3VJrlLqAVgLolqQjzUdg_XOo6XJ6MFPOzrob-pCpGn2zk2YEg2OTnoK-xDDZ6KjnjF6PSTa6ZRzYaK7QwzeUoPDcOzD4ZpcuOzAm9-7JO-PD2-b52L7-vSyWW8LUzUwF1bUtRYtaNmJppaia2sHBi2Thq24saatudNMoMtrHbRNLSTIzgLDTjiU1ZI0p14TQ0oRndpHP-p4UAzUEY_q1R8edcSjTnhy8P4UxLzuy2NU2YFT_u0jmlnZ4P-r-AFVq3Ju</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A modified scaling law for stiffness of nanoporous materials based on gyroid cell model</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Liu, Haomin ; Abdolrahim, Niaz</creator><creatorcontrib>Liu, Haomin ; Abdolrahim, Niaz</creatorcontrib><description>•A continuum model is developed for predicting stiffness of a gyroid unit cell.•The modified scaling law accounts stretching and bending deformation modes.•The deformation is a mixture of bending and stretching at low relative density.•The deformation is stretching-dominant at high relative density. Gibson-Ashby model can't well describe the experimental stiffness of nanoporous materials as the ligament size decreases to the nanoscale. We theoretically developed a refined continuum model based on a cubic, periodic arrangement of a gyroid unit cell with three-fold node connectivity. Our modified scaling law is given as E/Es = C1ϕ + C2ϕ2, where C1 and C2 account for the stretching and bending deformation mode, respectively. We found a good agreement between the simulation and theoretical calculations of the stiffness. We identified other morphological factors such as ligament aspect ratio and node to ligament volume ratio that affect the deformation behavior of the gyroid unit cell besides the relative density. A mixture of bending and stretching modes is observed in the gyroid unit cell under uniaxial tensile loading. We observed a transition from bending-stretching to stretching-dominant deformation by increasing the relative density of the gyroid unit cell.</description><identifier>ISSN: 0020-7403</identifier><identifier>EISSN: 1879-2162</identifier><identifier>DOI: 10.1016/j.ijmecsci.2019.105223</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Continuum mechanics model ; Deformation ; Elastic properties ; Nanoporous ; Scaling law</subject><ispartof>International journal of mechanical sciences, 2020-01, Vol.166, p.105223, Article 105223</ispartof><rights>2019 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-d544a570a9b56495b74f0ced19c182cdc742fa15ef053f07645909bd01eb5fe93</citedby><cites>FETCH-LOGICAL-c360t-d544a570a9b56495b74f0ced19c182cdc742fa15ef053f07645909bd01eb5fe93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Liu, Haomin</creatorcontrib><creatorcontrib>Abdolrahim, Niaz</creatorcontrib><title>A modified scaling law for stiffness of nanoporous materials based on gyroid cell model</title><title>International journal of mechanical sciences</title><description>•A continuum model is developed for predicting stiffness of a gyroid unit cell.•The modified scaling law accounts stretching and bending deformation modes.•The deformation is a mixture of bending and stretching at low relative density.•The deformation is stretching-dominant at high relative density. Gibson-Ashby model can't well describe the experimental stiffness of nanoporous materials as the ligament size decreases to the nanoscale. We theoretically developed a refined continuum model based on a cubic, periodic arrangement of a gyroid unit cell with three-fold node connectivity. Our modified scaling law is given as E/Es = C1ϕ + C2ϕ2, where C1 and C2 account for the stretching and bending deformation mode, respectively. We found a good agreement between the simulation and theoretical calculations of the stiffness. We identified other morphological factors such as ligament aspect ratio and node to ligament volume ratio that affect the deformation behavior of the gyroid unit cell besides the relative density. A mixture of bending and stretching modes is observed in the gyroid unit cell under uniaxial tensile loading. We observed a transition from bending-stretching to stretching-dominant deformation by increasing the relative density of the gyroid unit cell.</description><subject>Continuum mechanics model</subject><subject>Deformation</subject><subject>Elastic properties</subject><subject>Nanoporous</subject><subject>Scaling law</subject><issn>0020-7403</issn><issn>1879-2162</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkF9LwzAUxYMoOKdfQfIFWm_Spl3eHMN_MPBF8TGkyc1IaZuRVGXf3ozps08XDuece_gRcsugZMCau770_YgmGV9yYDKLgvPqjCzYqpUFZw0_JwsADkVbQ3VJrlLqAVgLolqQjzUdg_XOo6XJ6MFPOzrob-pCpGn2zk2YEg2OTnoK-xDDZ6KjnjF6PSTa6ZRzYaK7QwzeUoPDcOzD4ZpcuOzAm9-7JO-PD2-b52L7-vSyWW8LUzUwF1bUtRYtaNmJppaia2sHBi2Thq24saatudNMoMtrHbRNLSTIzgLDTjiU1ZI0p14TQ0oRndpHP-p4UAzUEY_q1R8edcSjTnhy8P4UxLzuy2NU2YFT_u0jmlnZ4P-r-AFVq3Ju</recordid><startdate>20200115</startdate><enddate>20200115</enddate><creator>Liu, Haomin</creator><creator>Abdolrahim, Niaz</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200115</creationdate><title>A modified scaling law for stiffness of nanoporous materials based on gyroid cell model</title><author>Liu, Haomin ; Abdolrahim, Niaz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-d544a570a9b56495b74f0ced19c182cdc742fa15ef053f07645909bd01eb5fe93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Continuum mechanics model</topic><topic>Deformation</topic><topic>Elastic properties</topic><topic>Nanoporous</topic><topic>Scaling law</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Haomin</creatorcontrib><creatorcontrib>Abdolrahim, Niaz</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of mechanical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Haomin</au><au>Abdolrahim, Niaz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A modified scaling law for stiffness of nanoporous materials based on gyroid cell model</atitle><jtitle>International journal of mechanical sciences</jtitle><date>2020-01-15</date><risdate>2020</risdate><volume>166</volume><spage>105223</spage><pages>105223-</pages><artnum>105223</artnum><issn>0020-7403</issn><eissn>1879-2162</eissn><abstract>•A continuum model is developed for predicting stiffness of a gyroid unit cell.•The modified scaling law accounts stretching and bending deformation modes.•The deformation is a mixture of bending and stretching at low relative density.•The deformation is stretching-dominant at high relative density. Gibson-Ashby model can't well describe the experimental stiffness of nanoporous materials as the ligament size decreases to the nanoscale. We theoretically developed a refined continuum model based on a cubic, periodic arrangement of a gyroid unit cell with three-fold node connectivity. Our modified scaling law is given as E/Es = C1ϕ + C2ϕ2, where C1 and C2 account for the stretching and bending deformation mode, respectively. We found a good agreement between the simulation and theoretical calculations of the stiffness. We identified other morphological factors such as ligament aspect ratio and node to ligament volume ratio that affect the deformation behavior of the gyroid unit cell besides the relative density. A mixture of bending and stretching modes is observed in the gyroid unit cell under uniaxial tensile loading. We observed a transition from bending-stretching to stretching-dominant deformation by increasing the relative density of the gyroid unit cell.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ijmecsci.2019.105223</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0020-7403
ispartof International journal of mechanical sciences, 2020-01, Vol.166, p.105223, Article 105223
issn 0020-7403
1879-2162
language eng
recordid cdi_crossref_primary_10_1016_j_ijmecsci_2019_105223
source ScienceDirect Freedom Collection 2022-2024
subjects Continuum mechanics model
Deformation
Elastic properties
Nanoporous
Scaling law
title A modified scaling law for stiffness of nanoporous materials based on gyroid cell model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T09%3A36%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20modified%20scaling%20law%20for%20stiffness%20of%20nanoporous%20materials%20based%20on%20gyroid%20cell%20model&rft.jtitle=International%20journal%20of%20mechanical%20sciences&rft.au=Liu,%20Haomin&rft.date=2020-01-15&rft.volume=166&rft.spage=105223&rft.pages=105223-&rft.artnum=105223&rft.issn=0020-7403&rft.eissn=1879-2162&rft_id=info:doi/10.1016/j.ijmecsci.2019.105223&rft_dat=%3Celsevier_cross%3ES0020740319329339%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c360t-d544a570a9b56495b74f0ced19c182cdc742fa15ef053f07645909bd01eb5fe93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true