Loading…
Lattice Boltzmann method for particulate multiphase flow system
•A numerical model (mr-TFM) for particulate three-phase flow in microchannels is proposed.•The two-fluid model is modified by introducing measurable rheology properties.•The reliability and accuracy are validated via theoretical and experimental benchmarks.•Inertial lagging and accumulation of micro...
Saved in:
Published in: | International journal of mechanical sciences 2024-07, Vol.273, p.109217, Article 109217 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c259t-d6f741dd4bfa8494dc7bb7b325ec91b016a1317daad2787243f7d1f1b2a9ba1b3 |
container_end_page | |
container_issue | |
container_start_page | 109217 |
container_title | International journal of mechanical sciences |
container_volume | 273 |
creator | Li, Qiangqiang Yang, Guang Huang, Yunfan Lu, Xukang Min, Jingchun Wang, Moran |
description | •A numerical model (mr-TFM) for particulate three-phase flow in microchannels is proposed.•The two-fluid model is modified by introducing measurable rheology properties.•The reliability and accuracy are validated via theoretical and experimental benchmarks.•Inertial lagging and accumulation of microgel particles can be well captured.
This study proposes a numerical model for particulate three-phase flow in microchannels based on multiphase lattice Boltzmann method (LBM). The model combines the color-gradient method to track the immiscible fluid-fluid interface and the two-fluid model (TFM) to describe particle-particle and particle-fluid interactions, which can efficiently simulate transport and displacement processes involving large amounts of particles. A mixture-rheology TFM algorithm is proposed by introducing a mixture phase with rheology properties obtained from experiments instead of the conventional TFM particle phase with artificial viscosity models. Multi-relaxation-time (MRT) collision operator and GPU computing are adopted to enhance the numerical stability and efficiency. Various theoretical benchmarks for particle transport and two-phase flow are performed respectively to verify the accuracy of the proposed model. Exceptional consistency between results from particulate three-phase flow simulation and microfluidic experiments further confirms the reliability of our model, especially in capturing the inertial lagging and accumulation phenomena under multiphase and porous flow conditions. The proposed numerical framework will benefit our understanding of multiphase displacement with microgels in microchannels with complex geometries.
[Display omitted] |
doi_str_mv | 10.1016/j.ijmecsci.2024.109217 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_ijmecsci_2024_109217</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020740324002595</els_id><sourcerecordid>S0020740324002595</sourcerecordid><originalsourceid>FETCH-LOGICAL-c259t-d6f741dd4bfa8494dc7bb7b325ec91b016a1317daad2787243f7d1f1b2a9ba1b3</originalsourceid><addsrcrecordid>eNqFkFtLAzEQhYMoWKt_QfIHtmay6ab75KV4g4Iv-hxymdAseylJqtRf75bVZ58GZuYczvkIuQa2AAbVTbMITYc22bDgjItxWXOQJ2QGK1kXHCp-SmaMcVZIwcpzcpFSwxhItixn5Hajcw4W6cPQ5u9O9z3tMG8HR_0Q6U7H8bhvdUba7dscdludkPp2-KLpkDJ2l-TM6zbh1e-ck4-nx_f1S7F5e35d328Ky5d1LlzlpQDnhPF6JWrhrDRGmpIv0dZgxhoaSpBOa8flSnJReunAg-G6NhpMOSfV5GvjkFJEr3YxdDoeFDB1xKAa9YdBHTGoCcMovJuEOKb7DBjV-IG9RRci2qzcEP6z-AGggGr8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Lattice Boltzmann method for particulate multiphase flow system</title><source>Elsevier</source><creator>Li, Qiangqiang ; Yang, Guang ; Huang, Yunfan ; Lu, Xukang ; Min, Jingchun ; Wang, Moran</creator><creatorcontrib>Li, Qiangqiang ; Yang, Guang ; Huang, Yunfan ; Lu, Xukang ; Min, Jingchun ; Wang, Moran</creatorcontrib><description>•A numerical model (mr-TFM) for particulate three-phase flow in microchannels is proposed.•The two-fluid model is modified by introducing measurable rheology properties.•The reliability and accuracy are validated via theoretical and experimental benchmarks.•Inertial lagging and accumulation of microgel particles can be well captured.
This study proposes a numerical model for particulate three-phase flow in microchannels based on multiphase lattice Boltzmann method (LBM). The model combines the color-gradient method to track the immiscible fluid-fluid interface and the two-fluid model (TFM) to describe particle-particle and particle-fluid interactions, which can efficiently simulate transport and displacement processes involving large amounts of particles. A mixture-rheology TFM algorithm is proposed by introducing a mixture phase with rheology properties obtained from experiments instead of the conventional TFM particle phase with artificial viscosity models. Multi-relaxation-time (MRT) collision operator and GPU computing are adopted to enhance the numerical stability and efficiency. Various theoretical benchmarks for particle transport and two-phase flow are performed respectively to verify the accuracy of the proposed model. Exceptional consistency between results from particulate three-phase flow simulation and microfluidic experiments further confirms the reliability of our model, especially in capturing the inertial lagging and accumulation phenomena under multiphase and porous flow conditions. The proposed numerical framework will benefit our understanding of multiphase displacement with microgels in microchannels with complex geometries.
[Display omitted]</description><identifier>ISSN: 0020-7403</identifier><identifier>EISSN: 1879-2162</identifier><identifier>DOI: 10.1016/j.ijmecsci.2024.109217</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Complex fluids ; Gel particle suspension ; Lattice Boltzmann ; Multiphase flow ; Two-fluid model</subject><ispartof>International journal of mechanical sciences, 2024-07, Vol.273, p.109217, Article 109217</ispartof><rights>2024 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c259t-d6f741dd4bfa8494dc7bb7b325ec91b016a1317daad2787243f7d1f1b2a9ba1b3</cites><orcidid>0000-0003-3315-6389 ; 0000-0002-0112-5150</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Li, Qiangqiang</creatorcontrib><creatorcontrib>Yang, Guang</creatorcontrib><creatorcontrib>Huang, Yunfan</creatorcontrib><creatorcontrib>Lu, Xukang</creatorcontrib><creatorcontrib>Min, Jingchun</creatorcontrib><creatorcontrib>Wang, Moran</creatorcontrib><title>Lattice Boltzmann method for particulate multiphase flow system</title><title>International journal of mechanical sciences</title><description>•A numerical model (mr-TFM) for particulate three-phase flow in microchannels is proposed.•The two-fluid model is modified by introducing measurable rheology properties.•The reliability and accuracy are validated via theoretical and experimental benchmarks.•Inertial lagging and accumulation of microgel particles can be well captured.
This study proposes a numerical model for particulate three-phase flow in microchannels based on multiphase lattice Boltzmann method (LBM). The model combines the color-gradient method to track the immiscible fluid-fluid interface and the two-fluid model (TFM) to describe particle-particle and particle-fluid interactions, which can efficiently simulate transport and displacement processes involving large amounts of particles. A mixture-rheology TFM algorithm is proposed by introducing a mixture phase with rheology properties obtained from experiments instead of the conventional TFM particle phase with artificial viscosity models. Multi-relaxation-time (MRT) collision operator and GPU computing are adopted to enhance the numerical stability and efficiency. Various theoretical benchmarks for particle transport and two-phase flow are performed respectively to verify the accuracy of the proposed model. Exceptional consistency between results from particulate three-phase flow simulation and microfluidic experiments further confirms the reliability of our model, especially in capturing the inertial lagging and accumulation phenomena under multiphase and porous flow conditions. The proposed numerical framework will benefit our understanding of multiphase displacement with microgels in microchannels with complex geometries.
[Display omitted]</description><subject>Complex fluids</subject><subject>Gel particle suspension</subject><subject>Lattice Boltzmann</subject><subject>Multiphase flow</subject><subject>Two-fluid model</subject><issn>0020-7403</issn><issn>1879-2162</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkFtLAzEQhYMoWKt_QfIHtmay6ab75KV4g4Iv-hxymdAseylJqtRf75bVZ58GZuYczvkIuQa2AAbVTbMITYc22bDgjItxWXOQJ2QGK1kXHCp-SmaMcVZIwcpzcpFSwxhItixn5Hajcw4W6cPQ5u9O9z3tMG8HR_0Q6U7H8bhvdUba7dscdludkPp2-KLpkDJ2l-TM6zbh1e-ck4-nx_f1S7F5e35d328Ky5d1LlzlpQDnhPF6JWrhrDRGmpIv0dZgxhoaSpBOa8flSnJReunAg-G6NhpMOSfV5GvjkFJEr3YxdDoeFDB1xKAa9YdBHTGoCcMovJuEOKb7DBjV-IG9RRci2qzcEP6z-AGggGr8</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Li, Qiangqiang</creator><creator>Yang, Guang</creator><creator>Huang, Yunfan</creator><creator>Lu, Xukang</creator><creator>Min, Jingchun</creator><creator>Wang, Moran</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3315-6389</orcidid><orcidid>https://orcid.org/0000-0002-0112-5150</orcidid></search><sort><creationdate>20240701</creationdate><title>Lattice Boltzmann method for particulate multiphase flow system</title><author>Li, Qiangqiang ; Yang, Guang ; Huang, Yunfan ; Lu, Xukang ; Min, Jingchun ; Wang, Moran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c259t-d6f741dd4bfa8494dc7bb7b325ec91b016a1317daad2787243f7d1f1b2a9ba1b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Complex fluids</topic><topic>Gel particle suspension</topic><topic>Lattice Boltzmann</topic><topic>Multiphase flow</topic><topic>Two-fluid model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Qiangqiang</creatorcontrib><creatorcontrib>Yang, Guang</creatorcontrib><creatorcontrib>Huang, Yunfan</creatorcontrib><creatorcontrib>Lu, Xukang</creatorcontrib><creatorcontrib>Min, Jingchun</creatorcontrib><creatorcontrib>Wang, Moran</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of mechanical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Qiangqiang</au><au>Yang, Guang</au><au>Huang, Yunfan</au><au>Lu, Xukang</au><au>Min, Jingchun</au><au>Wang, Moran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lattice Boltzmann method for particulate multiphase flow system</atitle><jtitle>International journal of mechanical sciences</jtitle><date>2024-07-01</date><risdate>2024</risdate><volume>273</volume><spage>109217</spage><pages>109217-</pages><artnum>109217</artnum><issn>0020-7403</issn><eissn>1879-2162</eissn><abstract>•A numerical model (mr-TFM) for particulate three-phase flow in microchannels is proposed.•The two-fluid model is modified by introducing measurable rheology properties.•The reliability and accuracy are validated via theoretical and experimental benchmarks.•Inertial lagging and accumulation of microgel particles can be well captured.
This study proposes a numerical model for particulate three-phase flow in microchannels based on multiphase lattice Boltzmann method (LBM). The model combines the color-gradient method to track the immiscible fluid-fluid interface and the two-fluid model (TFM) to describe particle-particle and particle-fluid interactions, which can efficiently simulate transport and displacement processes involving large amounts of particles. A mixture-rheology TFM algorithm is proposed by introducing a mixture phase with rheology properties obtained from experiments instead of the conventional TFM particle phase with artificial viscosity models. Multi-relaxation-time (MRT) collision operator and GPU computing are adopted to enhance the numerical stability and efficiency. Various theoretical benchmarks for particle transport and two-phase flow are performed respectively to verify the accuracy of the proposed model. Exceptional consistency between results from particulate three-phase flow simulation and microfluidic experiments further confirms the reliability of our model, especially in capturing the inertial lagging and accumulation phenomena under multiphase and porous flow conditions. The proposed numerical framework will benefit our understanding of multiphase displacement with microgels in microchannels with complex geometries.
[Display omitted]</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ijmecsci.2024.109217</doi><orcidid>https://orcid.org/0000-0003-3315-6389</orcidid><orcidid>https://orcid.org/0000-0002-0112-5150</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7403 |
ispartof | International journal of mechanical sciences, 2024-07, Vol.273, p.109217, Article 109217 |
issn | 0020-7403 1879-2162 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_ijmecsci_2024_109217 |
source | Elsevier |
subjects | Complex fluids Gel particle suspension Lattice Boltzmann Multiphase flow Two-fluid model |
title | Lattice Boltzmann method for particulate multiphase flow system |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T16%3A16%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lattice%20Boltzmann%20method%20for%20particulate%20multiphase%20flow%20system&rft.jtitle=International%20journal%20of%20mechanical%20sciences&rft.au=Li,%20Qiangqiang&rft.date=2024-07-01&rft.volume=273&rft.spage=109217&rft.pages=109217-&rft.artnum=109217&rft.issn=0020-7403&rft.eissn=1879-2162&rft_id=info:doi/10.1016/j.ijmecsci.2024.109217&rft_dat=%3Celsevier_cross%3ES0020740324002595%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c259t-d6f741dd4bfa8494dc7bb7b325ec91b016a1317daad2787243f7d1f1b2a9ba1b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |