Loading…

Statistical Moments Transport Model for the prediction of slug flow properties

•A new model is proposed for the evolution of slug length distributions.•Model is based on the direct transport of statistical moments.•Validation with six different experimental data sets.•Agreement with experimental data is generally better than existing models.•Computational cost is up to two ord...

Full description

Saved in:
Bibliographic Details
Published in:International journal of multiphase flow 2019-11, Vol.120, p.103086, Article 103086
Main Authors: Fagundes Netto, J.R., Gonçalves, G.F.N., Silva Freire, A.P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c373t-338270af964b207744347c8e88582b9c5278775297d955f6a47f5fae8c27900c3
cites cdi_FETCH-LOGICAL-c373t-338270af964b207744347c8e88582b9c5278775297d955f6a47f5fae8c27900c3
container_end_page
container_issue
container_start_page 103086
container_title International journal of multiphase flow
container_volume 120
creator Fagundes Netto, J.R.
Gonçalves, G.F.N.
Silva Freire, A.P.
description •A new model is proposed for the evolution of slug length distributions.•Model is based on the direct transport of statistical moments.•Validation with six different experimental data sets.•Agreement with experimental data is generally better than existing models.•Computational cost is up to two orders of magnitude lower than alternatives. The present work introduces the Statistical Moments Transport (SMT) Model for a description of the mean and standard deviation values of bubble and liquid slug lengths in horizontal, inclined and vertical flows. The model considers gas depressurization and the interaction (coalescence) between long bubbles. Results are compared to three other theoretical approaches – unit cell, slug tracking and slug capturing models – and six different experimental data sets. The gain in computing time as compared to the slug tracking model even in relatively short pipes is of two orders of magnitude.
doi_str_mv 10.1016/j.ijmultiphaseflow.2019.103086
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_ijmultiphaseflow_2019_103086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0301932219302290</els_id><sourcerecordid>S0301932219302290</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-338270af964b207744347c8e88582b9c5278775297d955f6a47f5fae8c27900c3</originalsourceid><addsrcrecordid>eNqNkLFOwzAQhi0EEqXwDp7YUhw7ju0FCVVAkQoMlNlynTN1lMaR7YJ4e1KFiYnppP-k77_7ELouyaIkZX3TLny7P3TZDzuTwHXha0FJqcYlI7I-QbNSClUwztgpmo1ZWShG6Tm6SKklhHBRsRl6ecsm-5S9NR1-Dnvoc8KbaPo0hJjHpIEOuxBx3gEeIjTeZh96HBxO3eEDH2vHPAwQs4d0ic6c6RJc_c45en-43yxXxfr18Wl5ty4sEywXjEkqiHGqrraUCFFVrBJWgpRc0q2ynAopBKdKNIpzV5tKOO4MSEuFIsSyObqduDaGlCI4PUS_N_Fbl0Qf7ehW_7Wjj3b0ZGcErCYAjFd-eog6WQ-9HR-MYLNugv8v6ged_XkS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Statistical Moments Transport Model for the prediction of slug flow properties</title><source>Elsevier</source><creator>Fagundes Netto, J.R. ; Gonçalves, G.F.N. ; Silva Freire, A.P.</creator><creatorcontrib>Fagundes Netto, J.R. ; Gonçalves, G.F.N. ; Silva Freire, A.P.</creatorcontrib><description>•A new model is proposed for the evolution of slug length distributions.•Model is based on the direct transport of statistical moments.•Validation with six different experimental data sets.•Agreement with experimental data is generally better than existing models.•Computational cost is up to two orders of magnitude lower than alternatives. The present work introduces the Statistical Moments Transport (SMT) Model for a description of the mean and standard deviation values of bubble and liquid slug lengths in horizontal, inclined and vertical flows. The model considers gas depressurization and the interaction (coalescence) between long bubbles. Results are compared to three other theoretical approaches – unit cell, slug tracking and slug capturing models – and six different experimental data sets. The gain in computing time as compared to the slug tracking model even in relatively short pipes is of two orders of magnitude.</description><identifier>ISSN: 0301-9322</identifier><identifier>EISSN: 1879-3533</identifier><identifier>DOI: 10.1016/j.ijmultiphaseflow.2019.103086</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Bubble distributions ; Slug flow ; Statistical moments</subject><ispartof>International journal of multiphase flow, 2019-11, Vol.120, p.103086, Article 103086</ispartof><rights>2019 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-338270af964b207744347c8e88582b9c5278775297d955f6a47f5fae8c27900c3</citedby><cites>FETCH-LOGICAL-c373t-338270af964b207744347c8e88582b9c5278775297d955f6a47f5fae8c27900c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Fagundes Netto, J.R.</creatorcontrib><creatorcontrib>Gonçalves, G.F.N.</creatorcontrib><creatorcontrib>Silva Freire, A.P.</creatorcontrib><title>Statistical Moments Transport Model for the prediction of slug flow properties</title><title>International journal of multiphase flow</title><description>•A new model is proposed for the evolution of slug length distributions.•Model is based on the direct transport of statistical moments.•Validation with six different experimental data sets.•Agreement with experimental data is generally better than existing models.•Computational cost is up to two orders of magnitude lower than alternatives. The present work introduces the Statistical Moments Transport (SMT) Model for a description of the mean and standard deviation values of bubble and liquid slug lengths in horizontal, inclined and vertical flows. The model considers gas depressurization and the interaction (coalescence) between long bubbles. Results are compared to three other theoretical approaches – unit cell, slug tracking and slug capturing models – and six different experimental data sets. The gain in computing time as compared to the slug tracking model even in relatively short pipes is of two orders of magnitude.</description><subject>Bubble distributions</subject><subject>Slug flow</subject><subject>Statistical moments</subject><issn>0301-9322</issn><issn>1879-3533</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNkLFOwzAQhi0EEqXwDp7YUhw7ju0FCVVAkQoMlNlynTN1lMaR7YJ4e1KFiYnppP-k77_7ELouyaIkZX3TLny7P3TZDzuTwHXha0FJqcYlI7I-QbNSClUwztgpmo1ZWShG6Tm6SKklhHBRsRl6ecsm-5S9NR1-Dnvoc8KbaPo0hJjHpIEOuxBx3gEeIjTeZh96HBxO3eEDH2vHPAwQs4d0ic6c6RJc_c45en-43yxXxfr18Wl5ty4sEywXjEkqiHGqrraUCFFVrBJWgpRc0q2ynAopBKdKNIpzV5tKOO4MSEuFIsSyObqduDaGlCI4PUS_N_Fbl0Qf7ehW_7Wjj3b0ZGcErCYAjFd-eog6WQ-9HR-MYLNugv8v6ged_XkS</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Fagundes Netto, J.R.</creator><creator>Gonçalves, G.F.N.</creator><creator>Silva Freire, A.P.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20191101</creationdate><title>Statistical Moments Transport Model for the prediction of slug flow properties</title><author>Fagundes Netto, J.R. ; Gonçalves, G.F.N. ; Silva Freire, A.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-338270af964b207744347c8e88582b9c5278775297d955f6a47f5fae8c27900c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bubble distributions</topic><topic>Slug flow</topic><topic>Statistical moments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fagundes Netto, J.R.</creatorcontrib><creatorcontrib>Gonçalves, G.F.N.</creatorcontrib><creatorcontrib>Silva Freire, A.P.</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of multiphase flow</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fagundes Netto, J.R.</au><au>Gonçalves, G.F.N.</au><au>Silva Freire, A.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical Moments Transport Model for the prediction of slug flow properties</atitle><jtitle>International journal of multiphase flow</jtitle><date>2019-11-01</date><risdate>2019</risdate><volume>120</volume><spage>103086</spage><pages>103086-</pages><artnum>103086</artnum><issn>0301-9322</issn><eissn>1879-3533</eissn><abstract>•A new model is proposed for the evolution of slug length distributions.•Model is based on the direct transport of statistical moments.•Validation with six different experimental data sets.•Agreement with experimental data is generally better than existing models.•Computational cost is up to two orders of magnitude lower than alternatives. The present work introduces the Statistical Moments Transport (SMT) Model for a description of the mean and standard deviation values of bubble and liquid slug lengths in horizontal, inclined and vertical flows. The model considers gas depressurization and the interaction (coalescence) between long bubbles. Results are compared to three other theoretical approaches – unit cell, slug tracking and slug capturing models – and six different experimental data sets. The gain in computing time as compared to the slug tracking model even in relatively short pipes is of two orders of magnitude.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ijmultiphaseflow.2019.103086</doi></addata></record>
fulltext fulltext
identifier ISSN: 0301-9322
ispartof International journal of multiphase flow, 2019-11, Vol.120, p.103086, Article 103086
issn 0301-9322
1879-3533
language eng
recordid cdi_crossref_primary_10_1016_j_ijmultiphaseflow_2019_103086
source Elsevier
subjects Bubble distributions
Slug flow
Statistical moments
title Statistical Moments Transport Model for the prediction of slug flow properties
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A53%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20Moments%20Transport%20Model%20for%20the%20prediction%20of%20slug%20flow%20properties&rft.jtitle=International%20journal%20of%20multiphase%20flow&rft.au=Fagundes%20Netto,%20J.R.&rft.date=2019-11-01&rft.volume=120&rft.spage=103086&rft.pages=103086-&rft.artnum=103086&rft.issn=0301-9322&rft.eissn=1879-3533&rft_id=info:doi/10.1016/j.ijmultiphaseflow.2019.103086&rft_dat=%3Celsevier_cross%3ES0301932219302290%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c373t-338270af964b207744347c8e88582b9c5278775297d955f6a47f5fae8c27900c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true