Loading…

Droplet bouncing on moving superhydrophobic groove surfaces

This study examined the bounce behavior of droplets impacting a moving superhydrophobic groove surface (SGS) and focused on the effect of the normal and tangential Weber numbers (Wen and Wes, respectively). The experimental results indicate that the rebound behavior of the droplets varied greatly wi...

Full description

Saved in:
Bibliographic Details
Published in:International journal of multiphase flow 2023-08, Vol.165, p.104454, Article 104454
Main Authors: Qian, Lijuan, Huo, Benjie, Chen, Zhongli, Li, Erqiang, Ding, Hang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c336t-9808a3c9d945fe396fd1916ed621d7c0e7b11de2d0c243efaf5a5694d8aeab1c3
cites cdi_FETCH-LOGICAL-c336t-9808a3c9d945fe396fd1916ed621d7c0e7b11de2d0c243efaf5a5694d8aeab1c3
container_end_page
container_issue
container_start_page 104454
container_title International journal of multiphase flow
container_volume 165
creator Qian, Lijuan
Huo, Benjie
Chen, Zhongli
Li, Erqiang
Ding, Hang
description This study examined the bounce behavior of droplets impacting a moving superhydrophobic groove surface (SGS) and focused on the effect of the normal and tangential Weber numbers (Wen and Wes, respectively). The experimental results indicate that the rebound behavior of the droplets varied greatly with the substrate velocity at the same Wen. Furthermore, with an increase in the superhydrophobic substrate velocity, the maximum spreading diameter increased, whereas the dimensionless contact time first increased, then decreased, and finally stabilized. Additionally, scaling laws for predicting the maximum spreading diameter and velocity recovery coefficients were proposed and verified using our experimental data. •The droplet rebounds more easily on a moving superhydrophobic groove surface.•A model to predict the maximum spreading diameter in the not reached Wenzel state.•The ɛn of a droplet bouncing off a moving surface is less than the static one.
doi_str_mv 10.1016/j.ijmultiphaseflow.2023.104454
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_ijmultiphaseflow_2023_104454</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0301932223000757</els_id><sourcerecordid>S0301932223000757</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-9808a3c9d945fe396fd1916ed621d7c0e7b11de2d0c243efaf5a5694d8aeab1c3</originalsourceid><addsrcrecordid>eNqNj8tKxDAUhrNQcBx9h67cdcytlyAIMl5GGHCj65AmJ9OUtilJW5m3t8O4cuXq_Jxz-Pg_hO4I3hBM8vtm45puakc31CqCbf33hmLKliPnGb9AK8wwSQWj9Apdx9hgjLOCsxV6eA5-aGFMKj_12vWHxPdJ5-dTitMAoT6a5aP2ldPJIXg_w7IPVmmIN-jSqjbC7e9co6_Xl8_tLt1_vL1vn_apZiwfU1HiUjEtjOCZBSZya4ggOZicElNoDEVFiAFqsKacgVU2U1kuuCkVqIpotkaPZ64OPsYAVg7BdSocJcHypC8b-VdfnvTlWX8B7M4AWFrODoKM2kGvwbgAepTGu_-ifgBX2HKE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Droplet bouncing on moving superhydrophobic groove surfaces</title><source>ScienceDirect Journals</source><creator>Qian, Lijuan ; Huo, Benjie ; Chen, Zhongli ; Li, Erqiang ; Ding, Hang</creator><creatorcontrib>Qian, Lijuan ; Huo, Benjie ; Chen, Zhongli ; Li, Erqiang ; Ding, Hang</creatorcontrib><description>This study examined the bounce behavior of droplets impacting a moving superhydrophobic groove surface (SGS) and focused on the effect of the normal and tangential Weber numbers (Wen and Wes, respectively). The experimental results indicate that the rebound behavior of the droplets varied greatly with the substrate velocity at the same Wen. Furthermore, with an increase in the superhydrophobic substrate velocity, the maximum spreading diameter increased, whereas the dimensionless contact time first increased, then decreased, and finally stabilized. Additionally, scaling laws for predicting the maximum spreading diameter and velocity recovery coefficients were proposed and verified using our experimental data. •The droplet rebounds more easily on a moving superhydrophobic groove surface.•A model to predict the maximum spreading diameter in the not reached Wenzel state.•The ɛn of a droplet bouncing off a moving surface is less than the static one.</description><identifier>ISSN: 0301-9322</identifier><identifier>DOI: 10.1016/j.ijmultiphaseflow.2023.104454</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Droplet ; Groove ; Moving surface</subject><ispartof>International journal of multiphase flow, 2023-08, Vol.165, p.104454, Article 104454</ispartof><rights>2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-9808a3c9d945fe396fd1916ed621d7c0e7b11de2d0c243efaf5a5694d8aeab1c3</citedby><cites>FETCH-LOGICAL-c336t-9808a3c9d945fe396fd1916ed621d7c0e7b11de2d0c243efaf5a5694d8aeab1c3</cites><orcidid>0000-0002-5003-0756</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Qian, Lijuan</creatorcontrib><creatorcontrib>Huo, Benjie</creatorcontrib><creatorcontrib>Chen, Zhongli</creatorcontrib><creatorcontrib>Li, Erqiang</creatorcontrib><creatorcontrib>Ding, Hang</creatorcontrib><title>Droplet bouncing on moving superhydrophobic groove surfaces</title><title>International journal of multiphase flow</title><description>This study examined the bounce behavior of droplets impacting a moving superhydrophobic groove surface (SGS) and focused on the effect of the normal and tangential Weber numbers (Wen and Wes, respectively). The experimental results indicate that the rebound behavior of the droplets varied greatly with the substrate velocity at the same Wen. Furthermore, with an increase in the superhydrophobic substrate velocity, the maximum spreading diameter increased, whereas the dimensionless contact time first increased, then decreased, and finally stabilized. Additionally, scaling laws for predicting the maximum spreading diameter and velocity recovery coefficients were proposed and verified using our experimental data. •The droplet rebounds more easily on a moving superhydrophobic groove surface.•A model to predict the maximum spreading diameter in the not reached Wenzel state.•The ɛn of a droplet bouncing off a moving surface is less than the static one.</description><subject>Droplet</subject><subject>Groove</subject><subject>Moving surface</subject><issn>0301-9322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqNj8tKxDAUhrNQcBx9h67cdcytlyAIMl5GGHCj65AmJ9OUtilJW5m3t8O4cuXq_Jxz-Pg_hO4I3hBM8vtm45puakc31CqCbf33hmLKliPnGb9AK8wwSQWj9Apdx9hgjLOCsxV6eA5-aGFMKj_12vWHxPdJ5-dTitMAoT6a5aP2ldPJIXg_w7IPVmmIN-jSqjbC7e9co6_Xl8_tLt1_vL1vn_apZiwfU1HiUjEtjOCZBSZya4ggOZicElNoDEVFiAFqsKacgVU2U1kuuCkVqIpotkaPZ64OPsYAVg7BdSocJcHypC8b-VdfnvTlWX8B7M4AWFrODoKM2kGvwbgAepTGu_-ifgBX2HKE</recordid><startdate>202308</startdate><enddate>202308</enddate><creator>Qian, Lijuan</creator><creator>Huo, Benjie</creator><creator>Chen, Zhongli</creator><creator>Li, Erqiang</creator><creator>Ding, Hang</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5003-0756</orcidid></search><sort><creationdate>202308</creationdate><title>Droplet bouncing on moving superhydrophobic groove surfaces</title><author>Qian, Lijuan ; Huo, Benjie ; Chen, Zhongli ; Li, Erqiang ; Ding, Hang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-9808a3c9d945fe396fd1916ed621d7c0e7b11de2d0c243efaf5a5694d8aeab1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Droplet</topic><topic>Groove</topic><topic>Moving surface</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qian, Lijuan</creatorcontrib><creatorcontrib>Huo, Benjie</creatorcontrib><creatorcontrib>Chen, Zhongli</creatorcontrib><creatorcontrib>Li, Erqiang</creatorcontrib><creatorcontrib>Ding, Hang</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of multiphase flow</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qian, Lijuan</au><au>Huo, Benjie</au><au>Chen, Zhongli</au><au>Li, Erqiang</au><au>Ding, Hang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Droplet bouncing on moving superhydrophobic groove surfaces</atitle><jtitle>International journal of multiphase flow</jtitle><date>2023-08</date><risdate>2023</risdate><volume>165</volume><spage>104454</spage><pages>104454-</pages><artnum>104454</artnum><issn>0301-9322</issn><abstract>This study examined the bounce behavior of droplets impacting a moving superhydrophobic groove surface (SGS) and focused on the effect of the normal and tangential Weber numbers (Wen and Wes, respectively). The experimental results indicate that the rebound behavior of the droplets varied greatly with the substrate velocity at the same Wen. Furthermore, with an increase in the superhydrophobic substrate velocity, the maximum spreading diameter increased, whereas the dimensionless contact time first increased, then decreased, and finally stabilized. Additionally, scaling laws for predicting the maximum spreading diameter and velocity recovery coefficients were proposed and verified using our experimental data. •The droplet rebounds more easily on a moving superhydrophobic groove surface.•A model to predict the maximum spreading diameter in the not reached Wenzel state.•The ɛn of a droplet bouncing off a moving surface is less than the static one.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ijmultiphaseflow.2023.104454</doi><orcidid>https://orcid.org/0000-0002-5003-0756</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0301-9322
ispartof International journal of multiphase flow, 2023-08, Vol.165, p.104454, Article 104454
issn 0301-9322
language eng
recordid cdi_crossref_primary_10_1016_j_ijmultiphaseflow_2023_104454
source ScienceDirect Journals
subjects Droplet
Groove
Moving surface
title Droplet bouncing on moving superhydrophobic groove surfaces
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A59%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Droplet%20bouncing%20on%20moving%20superhydrophobic%20groove%20surfaces&rft.jtitle=International%20journal%20of%20multiphase%20flow&rft.au=Qian,%20Lijuan&rft.date=2023-08&rft.volume=165&rft.spage=104454&rft.pages=104454-&rft.artnum=104454&rft.issn=0301-9322&rft_id=info:doi/10.1016/j.ijmultiphaseflow.2023.104454&rft_dat=%3Celsevier_cross%3ES0301932223000757%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c336t-9808a3c9d945fe396fd1916ed621d7c0e7b11de2d0c243efaf5a5694d8aeab1c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true