Loading…

Stability analysis for viscoelastic fluid with thermorheological effects: Linear and nonlinear approaches

This study investigates the stability analysis of Rayleigh-Bénard configuration for a viscoelastic fluid subject to thermorheological effects, using the D2-Chebyshev-τ method. The fluid is modeled as a third-order viscoelastic fluid. This study accentuates how salting the fluid layer affects the thr...

Full description

Saved in:
Bibliographic Details
Published in:International journal of non-linear mechanics 2025-01, Vol.168, p.104927, Article 104927
Main Authors: Basavarajappa, Mahanthesh, Bhatta, Dambaru
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c195t-a089f45107eabf5bd5e36825a4b3fdaac44184e2d265d8d924044573a1d0b04a3
container_end_page
container_issue
container_start_page 104927
container_title International journal of non-linear mechanics
container_volume 168
creator Basavarajappa, Mahanthesh
Bhatta, Dambaru
description This study investigates the stability analysis of Rayleigh-Bénard configuration for a viscoelastic fluid subject to thermorheological effects, using the D2-Chebyshev-τ method. The fluid is modeled as a third-order viscoelastic fluid. This study accentuates how salting the fluid layer affects the thresholds for the onset of instability in a fluid of third order encompassing physically realistic rigid boundaries. The dynamic model incorporates advection-diffusion of temperature and solute concentration and a modified Navier–Stokes equation. We determine instability thresholds for the complex non-Newtonian fluid by analyzing the linear stability of the steady-state conduction solution. Our analysis proves the strong form of the principle of exchange of stabilities, demonstrating that convective motions can only occur through stationary motion. Additionally, a nonlinear stability analysis using the energy method is performed, deriving an unconditional nonlinear stability criterion. The results provide a comprehensive understanding of how variable viscosity and viscoelasticity impact system stability. Both the viscosity parameter and the third-grade fluid parameter exhibit stabilizing effects. Notably, we observe a discrepancy between the linear and global nonlinear stability results, indicating the presence of a subcritical instability region. This study contributes to the understanding of complex fluid dynamics in non-linear mechanical systems, with potential applications in various industrial and natural processes. •A system of differential equations models the double-diffusive convection in viscoelastic fluid.•The effect of temperature-dependent viscosity on the onset of convection is examined.•The strong form of principle of exchange of stabilities is proved.•Linear analysis determines thresholds above which steady solutions become unstable.•Nonlinear analysis proves the total perturbed energy of the system decays asymptotically.
doi_str_mv 10.1016/j.ijnonlinmec.2024.104927
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_ijnonlinmec_2024_104927</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020746224002920</els_id><sourcerecordid>S0020746224002920</sourcerecordid><originalsourceid>FETCH-LOGICAL-c195t-a089f45107eabf5bd5e36825a4b3fdaac44184e2d265d8d924044573a1d0b04a3</originalsourceid><addsrcrecordid>eNqNkM1OwzAQhHMAiVJ4B_MALbbj_HFDFX9SJQ7A2drYa7KRG1d2KOrbEwgHjpxWu9oZzXxZdiX4WnBRXvdr6ocweBp2aNaSSzXdVSOrk2zBueSrSpXyLDtPqefTv-LVIqOXEVryNB4ZDOCPiRJzIbIDJRPQQxrJMOc_yLJPGjs2dhh3IXYYfHgnA56hc2jGdMO2NCDEycayOcXPtt_HAKbDdJGdOvAJL3_nMnu7v3vdPK62zw9Pm9vtyoimGFfA68apQvAKoXVFawvMy1oWoNrcWQCjlKgVSivLwta2kYorVVQ5CMtbriBfZs3sa2JIKaLT-0g7iEctuP7mpHv9h5P-5qRnTpN2M2txCnggjDoZwsGgpTiV1DbQP1y-AGyFfHg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Stability analysis for viscoelastic fluid with thermorheological effects: Linear and nonlinear approaches</title><source>Backfile Package - Physics General</source><source>ScienceDirect Journals</source><creator>Basavarajappa, Mahanthesh ; Bhatta, Dambaru</creator><creatorcontrib>Basavarajappa, Mahanthesh ; Bhatta, Dambaru</creatorcontrib><description>This study investigates the stability analysis of Rayleigh-Bénard configuration for a viscoelastic fluid subject to thermorheological effects, using the D2-Chebyshev-τ method. The fluid is modeled as a third-order viscoelastic fluid. This study accentuates how salting the fluid layer affects the thresholds for the onset of instability in a fluid of third order encompassing physically realistic rigid boundaries. The dynamic model incorporates advection-diffusion of temperature and solute concentration and a modified Navier–Stokes equation. We determine instability thresholds for the complex non-Newtonian fluid by analyzing the linear stability of the steady-state conduction solution. Our analysis proves the strong form of the principle of exchange of stabilities, demonstrating that convective motions can only occur through stationary motion. Additionally, a nonlinear stability analysis using the energy method is performed, deriving an unconditional nonlinear stability criterion. The results provide a comprehensive understanding of how variable viscosity and viscoelasticity impact system stability. Both the viscosity parameter and the third-grade fluid parameter exhibit stabilizing effects. Notably, we observe a discrepancy between the linear and global nonlinear stability results, indicating the presence of a subcritical instability region. This study contributes to the understanding of complex fluid dynamics in non-linear mechanical systems, with potential applications in various industrial and natural processes. •A system of differential equations models the double-diffusive convection in viscoelastic fluid.•The effect of temperature-dependent viscosity on the onset of convection is examined.•The strong form of principle of exchange of stabilities is proved.•Linear analysis determines thresholds above which steady solutions become unstable.•Nonlinear analysis proves the total perturbed energy of the system decays asymptotically.</description><identifier>ISSN: 0020-7462</identifier><identifier>DOI: 10.1016/j.ijnonlinmec.2024.104927</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Chebyshev-τ method ; Energy method ; Non-Newtonian fluid ; Nonlinear stability analysis ; Thermosolutal convection</subject><ispartof>International journal of non-linear mechanics, 2025-01, Vol.168, p.104927, Article 104927</ispartof><rights>2024 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c195t-a089f45107eabf5bd5e36825a4b3fdaac44184e2d265d8d924044573a1d0b04a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0020746224002920$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3632,27924,27925,46012</link.rule.ids></links><search><creatorcontrib>Basavarajappa, Mahanthesh</creatorcontrib><creatorcontrib>Bhatta, Dambaru</creatorcontrib><title>Stability analysis for viscoelastic fluid with thermorheological effects: Linear and nonlinear approaches</title><title>International journal of non-linear mechanics</title><description>This study investigates the stability analysis of Rayleigh-Bénard configuration for a viscoelastic fluid subject to thermorheological effects, using the D2-Chebyshev-τ method. The fluid is modeled as a third-order viscoelastic fluid. This study accentuates how salting the fluid layer affects the thresholds for the onset of instability in a fluid of third order encompassing physically realistic rigid boundaries. The dynamic model incorporates advection-diffusion of temperature and solute concentration and a modified Navier–Stokes equation. We determine instability thresholds for the complex non-Newtonian fluid by analyzing the linear stability of the steady-state conduction solution. Our analysis proves the strong form of the principle of exchange of stabilities, demonstrating that convective motions can only occur through stationary motion. Additionally, a nonlinear stability analysis using the energy method is performed, deriving an unconditional nonlinear stability criterion. The results provide a comprehensive understanding of how variable viscosity and viscoelasticity impact system stability. Both the viscosity parameter and the third-grade fluid parameter exhibit stabilizing effects. Notably, we observe a discrepancy between the linear and global nonlinear stability results, indicating the presence of a subcritical instability region. This study contributes to the understanding of complex fluid dynamics in non-linear mechanical systems, with potential applications in various industrial and natural processes. •A system of differential equations models the double-diffusive convection in viscoelastic fluid.•The effect of temperature-dependent viscosity on the onset of convection is examined.•The strong form of principle of exchange of stabilities is proved.•Linear analysis determines thresholds above which steady solutions become unstable.•Nonlinear analysis proves the total perturbed energy of the system decays asymptotically.</description><subject>Chebyshev-τ method</subject><subject>Energy method</subject><subject>Non-Newtonian fluid</subject><subject>Nonlinear stability analysis</subject><subject>Thermosolutal convection</subject><issn>0020-7462</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNqNkM1OwzAQhHMAiVJ4B_MALbbj_HFDFX9SJQ7A2drYa7KRG1d2KOrbEwgHjpxWu9oZzXxZdiX4WnBRXvdr6ocweBp2aNaSSzXdVSOrk2zBueSrSpXyLDtPqefTv-LVIqOXEVryNB4ZDOCPiRJzIbIDJRPQQxrJMOc_yLJPGjs2dhh3IXYYfHgnA56hc2jGdMO2NCDEycayOcXPtt_HAKbDdJGdOvAJL3_nMnu7v3vdPK62zw9Pm9vtyoimGFfA68apQvAKoXVFawvMy1oWoNrcWQCjlKgVSivLwta2kYorVVQ5CMtbriBfZs3sa2JIKaLT-0g7iEctuP7mpHv9h5P-5qRnTpN2M2txCnggjDoZwsGgpTiV1DbQP1y-AGyFfHg</recordid><startdate>202501</startdate><enddate>202501</enddate><creator>Basavarajappa, Mahanthesh</creator><creator>Bhatta, Dambaru</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202501</creationdate><title>Stability analysis for viscoelastic fluid with thermorheological effects: Linear and nonlinear approaches</title><author>Basavarajappa, Mahanthesh ; Bhatta, Dambaru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c195t-a089f45107eabf5bd5e36825a4b3fdaac44184e2d265d8d924044573a1d0b04a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Chebyshev-τ method</topic><topic>Energy method</topic><topic>Non-Newtonian fluid</topic><topic>Nonlinear stability analysis</topic><topic>Thermosolutal convection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Basavarajappa, Mahanthesh</creatorcontrib><creatorcontrib>Bhatta, Dambaru</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of non-linear mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Basavarajappa, Mahanthesh</au><au>Bhatta, Dambaru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability analysis for viscoelastic fluid with thermorheological effects: Linear and nonlinear approaches</atitle><jtitle>International journal of non-linear mechanics</jtitle><date>2025-01</date><risdate>2025</risdate><volume>168</volume><spage>104927</spage><pages>104927-</pages><artnum>104927</artnum><issn>0020-7462</issn><abstract>This study investigates the stability analysis of Rayleigh-Bénard configuration for a viscoelastic fluid subject to thermorheological effects, using the D2-Chebyshev-τ method. The fluid is modeled as a third-order viscoelastic fluid. This study accentuates how salting the fluid layer affects the thresholds for the onset of instability in a fluid of third order encompassing physically realistic rigid boundaries. The dynamic model incorporates advection-diffusion of temperature and solute concentration and a modified Navier–Stokes equation. We determine instability thresholds for the complex non-Newtonian fluid by analyzing the linear stability of the steady-state conduction solution. Our analysis proves the strong form of the principle of exchange of stabilities, demonstrating that convective motions can only occur through stationary motion. Additionally, a nonlinear stability analysis using the energy method is performed, deriving an unconditional nonlinear stability criterion. The results provide a comprehensive understanding of how variable viscosity and viscoelasticity impact system stability. Both the viscosity parameter and the third-grade fluid parameter exhibit stabilizing effects. Notably, we observe a discrepancy between the linear and global nonlinear stability results, indicating the presence of a subcritical instability region. This study contributes to the understanding of complex fluid dynamics in non-linear mechanical systems, with potential applications in various industrial and natural processes. •A system of differential equations models the double-diffusive convection in viscoelastic fluid.•The effect of temperature-dependent viscosity on the onset of convection is examined.•The strong form of principle of exchange of stabilities is proved.•Linear analysis determines thresholds above which steady solutions become unstable.•Nonlinear analysis proves the total perturbed energy of the system decays asymptotically.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ijnonlinmec.2024.104927</doi></addata></record>
fulltext fulltext
identifier ISSN: 0020-7462
ispartof International journal of non-linear mechanics, 2025-01, Vol.168, p.104927, Article 104927
issn 0020-7462
language eng
recordid cdi_crossref_primary_10_1016_j_ijnonlinmec_2024_104927
source Backfile Package - Physics General; ScienceDirect Journals
subjects Chebyshev-τ method
Energy method
Non-Newtonian fluid
Nonlinear stability analysis
Thermosolutal convection
title Stability analysis for viscoelastic fluid with thermorheological effects: Linear and nonlinear approaches
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A58%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20analysis%20for%20viscoelastic%20fluid%20with%20thermorheological%20effects:%20Linear%20and%20nonlinear%20approaches&rft.jtitle=International%20journal%20of%20non-linear%20mechanics&rft.au=Basavarajappa,%20Mahanthesh&rft.date=2025-01&rft.volume=168&rft.spage=104927&rft.pages=104927-&rft.artnum=104927&rft.issn=0020-7462&rft_id=info:doi/10.1016/j.ijnonlinmec.2024.104927&rft_dat=%3Celsevier_cross%3ES0020746224002920%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c195t-a089f45107eabf5bd5e36825a4b3fdaac44184e2d265d8d924044573a1d0b04a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true