Loading…
Development of daidzein nanosuspensions: Preparation, characterization, in vitro evaluation, and pharmacokinetic analysis
[Display omitted] The purpose of this investigation was to improve the solubility and oral bioavailability of daidzein via preparing nanosuspensions (NS) with steric stabilizers, electrostatic stabilizers, or a combination of both. Based on particle size and zeta potential, daidzein NS stabilized by...
Saved in:
Published in: | International journal of pharmaceutics 2019-07, Vol.566, p.67-76 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | [Display omitted]
The purpose of this investigation was to improve the solubility and oral bioavailability of daidzein via preparing nanosuspensions (NS) with steric stabilizers, electrostatic stabilizers, or a combination of both. Based on particle size and zeta potential, daidzein NS stabilized by HP-β-CD, soy lecithin, HP-β-CD + soy lecithin, TPGS, TPGS + SBE-β-CD, SDS, or HPMC E5 + SDS were generated and characterized by scanning electron microscopy, powder X-ray diffraction, and Fourier transform-infrared spectroscopy. In addition, the stability, cytotoxicity, solubility, dissolution, and pharmacokinetics of NS were evaluated. The resulting daidzein NS were physically stable and biocompatible and presented as regular shapes with homogenous particle sizes of 360–600 nm and decreased crystallinity. Due to the increased solubility and dissolution rate, the oral bioavailability of daidzein NS in rats was 1.63–2.19 times greater than that of crude daidzein. In particular, among the investigated seven daidzein NS formulations, daidzein NS prepared with the costabilizers HPMC E5 + SDS is an optimal formulation for increased daidzein bioavailability. The present study proposes that the combined usage of steric and electrostatic stabilizers is a promising strategy for improving the bioavailability of water-insoluble flavonoid compounds by an NS approach. |
---|---|
ISSN: | 0378-5173 1873-3476 |
DOI: | 10.1016/j.ijpharm.2019.05.051 |