Loading…
Condensation heat transfer coefficients of R1234yf on plain, low fin, and Turbo-C tubes
In this study, external condensation heat transfer coefficients (HTCs) of HFC134a and R1234yf are measured on a plain, low fin, and Turbo-C tubes at the saturated vapor temperature of 39 °C with the wall subcooling of 3–8 °C. R1234yf is a new alternative refrigerant of low greenhouse warming potenti...
Saved in:
Published in: | International journal of refrigeration 2011, Vol.34 (1), p.317-321 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this study, external condensation heat transfer coefficients (HTCs) of HFC134a and R1234yf are measured on a plain, low fin, and Turbo-C tubes at the saturated vapor temperature of 39 °C with the wall subcooling of 3–8 °C. R1234yf is a new alternative refrigerant of low greenhouse warming potential for replacing HFC134a, one of the greenhouse gases in Kyoto protocol, used extensively in automobile air conditioners and other refrigeration systems. Test results show that the condensation HTCs of R1234yf are very similar to those of HFC134a for all three surfaces tested. For the development of heat transfer correlations, thorough property measurements are needed for R1234yf in the near future. |
---|---|
ISSN: | 0140-7007 1879-2081 |
DOI: | 10.1016/j.ijrefrig.2010.06.010 |