Loading…
Parameter calibration for high-porosity sandstones deformed in the compaction banding regime
This paper discusses the parameter calibration procedure for an elastoplastic constitutive model for high-porosity rocks. The model selected for the study is formulated in the frame of the critical state theory, which is here used in a form able to accommodate non-associated plastic flow and softeni...
Saved in:
Published in: | International journal of rock mechanics and mining sciences (Oxford, England : 1997) England : 1997), 2015-09, Vol.78, p.240-252 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper discusses the parameter calibration procedure for an elastoplastic constitutive model for high-porosity rocks. The model selected for the study is formulated in the frame of the critical state theory, which is here used in a form able to accommodate non-associated plastic flow and softening effects due to volumetric and deviatoric plastic strains. The goal of this study is to generate a set of model constants able to capture both the stress-strain response and the compaction localization characteristics (e.g., stress and inclination at the onset of the deformation bands). For this purpose, data about the compaction localization properties of four extensively characterized sandstones have been considered. In particular, the strain localization theory has been used as a calibration tool, using explicitly information about the pressure-dependence of the localization mechanisms observed in experiments. The model constants have been defined by matching the constitutive response upon hydrostatic compression, as well as the stresses at the transition from high-angle shear bands to pure compaction bands, and from compaction bands to homogeneous cataclastic flow. It is shown that such procedure generates a set of model constants able to capture satisfactorily both the rheological response upon triaxial compression and the salient features of the compaction localization process.
•Constitutive modeling of compaction localization in sandstones.•Use of strain localization feature to calibrate the constitutive model parameters.•Transitions from high-angle shear bands to pure compaction bands. |
---|---|
ISSN: | 1365-1609 1873-4545 |
DOI: | 10.1016/j.ijrmms.2015.05.004 |