Loading…

Experimental investigation on maximum ceiling temperature and longitudinal attenuation in a closed tunnel with an inclined shaft

For tunnel fires with open and closed tunnel ends, the smoke flow pattern and air supply conditions vary considerably, resulting in different maximum excess ceiling temperature (ΔTmax) and its longitudinal distribution (ΔTx). However, few studies have focused on the tunnel closed at both ends with a...

Full description

Saved in:
Bibliographic Details
Published in:International journal of thermal sciences 2025-02, Vol.208, p.109484, Article 109484
Main Authors: Qiu, Mingxuan, Xu, Lin, Zhao, Yinghao, Ding, Chao, Zhao, Shengzhong, Yu, Wei, Li, Longyue, Zhou, Xiaoxuan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:For tunnel fires with open and closed tunnel ends, the smoke flow pattern and air supply conditions vary considerably, resulting in different maximum excess ceiling temperature (ΔTmax) and its longitudinal distribution (ΔTx). However, few studies have focused on the tunnel closed at both ends with an inclined shaft (typical tunnel structure during construction). Hence, tunnel model 1 (tunnel closed at both ends with an inclined shaft) and tunnel model 2 (tunnel open at both ends) are built for comparison and analysis. The results show that tunnel model 1 has higher ceiling temperatures and slower attenuation than tunnel model 2. Therefore, the ΔTx in tunnel model 1 needs to be re-analyzed in detail. Different inclined shaft slopes, fire heat release rates, longitudinal and vertical fire positions are considered. In tunnel model 1, for h (lifting height of burner surface) = 0, the ΔTmax value tends to be constant for the same heat release rate, irrespective of the longitudinal fire position. For h = 5 cm, the ΔTmax value takes on a rising trend with the fire moving downstream. Moreover, the inclined shaft slope within this study has little influence on ΔTx. As the fire moves downstream, the downstream ΔTx/ΔTmax value decreases more rapidly. From h = 0 to h = 5 cm, the value of ΔTx/ΔTmax drops slightly faster, but the gap is small and can be ignored. Finally, the experimental correlations are proposed to estimate the longitudinal ceiling temperature distribution in a closed tunnel with an inclined shaft.
ISSN:1290-0729
DOI:10.1016/j.ijthermalsci.2024.109484