Loading…
Chemical profiles of primary and secondary essential oils of palmarosa ( Cymbopogon martinii (Roxb.) Wats var. motia Burk.)
Natural essential oils extracted from aromatic crops through steam distillation are extensively used in fragrance, flavour and pharmaceutical industries and in aromatherapy. During steam distillation, a part of the essential oil becomes dissolved in condensate or distillation water and is lost as th...
Saved in:
Published in: | Industrial crops and products 2005, Vol.21 (1), p.121-127 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Natural essential oils extracted from aromatic crops through steam distillation are extensively used in fragrance, flavour and pharmaceutical industries and in aromatherapy. During steam distillation, a part of the essential oil becomes dissolved in condensate or distillation water and is lost as this water is discarded. A method was developed to recover the dissolved essential oil from condensate water. Palmarosa (
Cymbopogon martinii (Roxb.) Wats. var.
motia Burk., family: Poaceae), an important aromatic grass was used as the test crop. The distillation water of palmarosa mixed with hexane in 10:1 proportion was thoroughly shaken for 30
min to trap the dissolved essential oil. Hexane was then distilled to yield ‘secondary’ or ‘recovered’ oil. In palmarosa, the ‘primary’ or ‘decanted’ oil (obtained directly by distilling the crop biomass) accounted for 92% and the recovered oil accounted for 8% of the total oil yield. The solvent loss in this process was 4–7%. Experiments conducted in the laboratory with the essential oil showed that the water solubility of palmarosa oil ranged from 0.12 to 0.15% at 31
°C and 0.15 to 0.20% at 80
°C. Hexane recovered up to 97% of the dissolved essential oil in water. The recovered essential oil was richer in organoleptically important oxygenated compounds linalool (2.6–3.8%), geraniol (91.8–92.8%) and geranial (1.8–2.0%) compared to the primary oil. |
---|---|
ISSN: | 0926-6690 1872-633X |
DOI: | 10.1016/j.indcrop.2004.02.002 |