Loading…

SKEAFN: Sentiment Knowledge Enhanced Attention Fusion Network for multimodal sentiment analysis

Multimodal sentiment analysis is an active research field that aims to recognize the user’s sentiment information from multimodal data. The primary challenge in this field is to develop a high-quality fusion framework that effectively addresses the heterogeneity among different modalities. However,...

Full description

Saved in:
Bibliographic Details
Published in:Information fusion 2023-12, Vol.100, p.101958, Article 101958
Main Authors: Zhu, Chuanbo, Chen, Min, Zhang, Sheng, Sun, Chao, Liang, Han, Liu, Yifan, Chen, Jincai
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c306t-b820883ba52f40e6958328bb486687df46ac321121876594293bda4ec9addda23
cites cdi_FETCH-LOGICAL-c306t-b820883ba52f40e6958328bb486687df46ac321121876594293bda4ec9addda23
container_end_page
container_issue
container_start_page 101958
container_title Information fusion
container_volume 100
creator Zhu, Chuanbo
Chen, Min
Zhang, Sheng
Sun, Chao
Liang, Han
Liu, Yifan
Chen, Jincai
description Multimodal sentiment analysis is an active research field that aims to recognize the user’s sentiment information from multimodal data. The primary challenge in this field is to develop a high-quality fusion framework that effectively addresses the heterogeneity among different modalities. However, prior research has primarily concentrated on intermodal interactions while neglecting the semantic sentiment information conveyed by words in the text modality. In this paper, we propose the Sentiment Knowledge Enhanced Attention Fusion Network (SKEAFN), a novel end-to-end fusion network that enhances multimodal fusion by incorporating additional sentiment knowledge representations from an external knowledge base. Firstly, we construct an external knowledge enhancement module to acquire additional representations for the text modality. Then, we design a text-guided interaction module that facilitates the interaction between text and the visual/acoustic modality. Finally, we propose a feature-wised attention fusion module that achieves multimodal fusion by dynamically adjusting the weights of the additional and each modality’s representations. We evaluate our method on three challenging multimodal sentiment analysis datasets: CMU-MOSI, CMU-MOSEI, and Twitter2019. The experiment results demonstrate that our model significantly outperforms the state-of-the-art models. The source code is publicly available at https://github.com/doubibobo/SKEAFN. •Propose a sentiment knowledge-enhanced attention fusion network (SKEAFN).•Build an additional knowledge graph to leverage explicit sentiment information.•Use a multi-head attention mechanism to model the interactions among modalities.•Develop feature-wised attention to adjust the contributions of multiple modalities.
doi_str_mv 10.1016/j.inffus.2023.101958
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_inffus_2023_101958</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1566253523002749</els_id><sourcerecordid>S1566253523002749</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-b820883ba52f40e6958328bb486687df46ac321121876594293bda4ec9addda23</originalsourceid><addsrcrecordid>eNp9kM9KAzEQxoMoWKtv4CEvsDV_NmnWg1BKq9JSD9VzyCZZTd0mkmwtfXuzrHj0MjPM8H3M9wPgFqMJRpjf7SbON80hTQgitF9VTJyBERZTUnCK2HmeGecFYZRdgquUdgjhKaJ4BOR2tZgtN_dwa33n9rnAlQ_H1pp3Cxf-Q3ltDZx1XX8OHi4PqW8b2x1D_IRNiHB_aLMyGNXC9GeivGpPyaVrcNGoNtmb3z4Gb8vF6_ypWL88Ps9n60JTxLuiFgQJQWvFSFMiy3MASkRdl4JzMTVNyZWmBGOSM3FWlaSitVGl1ZUyxihCx6AcfHUMKUXbyK_o9iqeJEayhyR3coAke0hygJRlD4PM5t--nY0yaWf7zC5a3UkT3P8GPxjuctA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>SKEAFN: Sentiment Knowledge Enhanced Attention Fusion Network for multimodal sentiment analysis</title><source>ScienceDirect Freedom Collection</source><creator>Zhu, Chuanbo ; Chen, Min ; Zhang, Sheng ; Sun, Chao ; Liang, Han ; Liu, Yifan ; Chen, Jincai</creator><creatorcontrib>Zhu, Chuanbo ; Chen, Min ; Zhang, Sheng ; Sun, Chao ; Liang, Han ; Liu, Yifan ; Chen, Jincai</creatorcontrib><description>Multimodal sentiment analysis is an active research field that aims to recognize the user’s sentiment information from multimodal data. The primary challenge in this field is to develop a high-quality fusion framework that effectively addresses the heterogeneity among different modalities. However, prior research has primarily concentrated on intermodal interactions while neglecting the semantic sentiment information conveyed by words in the text modality. In this paper, we propose the Sentiment Knowledge Enhanced Attention Fusion Network (SKEAFN), a novel end-to-end fusion network that enhances multimodal fusion by incorporating additional sentiment knowledge representations from an external knowledge base. Firstly, we construct an external knowledge enhancement module to acquire additional representations for the text modality. Then, we design a text-guided interaction module that facilitates the interaction between text and the visual/acoustic modality. Finally, we propose a feature-wised attention fusion module that achieves multimodal fusion by dynamically adjusting the weights of the additional and each modality’s representations. We evaluate our method on three challenging multimodal sentiment analysis datasets: CMU-MOSI, CMU-MOSEI, and Twitter2019. The experiment results demonstrate that our model significantly outperforms the state-of-the-art models. The source code is publicly available at https://github.com/doubibobo/SKEAFN. •Propose a sentiment knowledge-enhanced attention fusion network (SKEAFN).•Build an additional knowledge graph to leverage explicit sentiment information.•Use a multi-head attention mechanism to model the interactions among modalities.•Develop feature-wised attention to adjust the contributions of multiple modalities.</description><identifier>ISSN: 1566-2535</identifier><identifier>EISSN: 1872-6305</identifier><identifier>DOI: 10.1016/j.inffus.2023.101958</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>External knowledge ; Multi-head attention ; Multi-view learning ; Multimodal sentiment analysis ; Multiple feature fusion</subject><ispartof>Information fusion, 2023-12, Vol.100, p.101958, Article 101958</ispartof><rights>2023 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c306t-b820883ba52f40e6958328bb486687df46ac321121876594293bda4ec9addda23</citedby><cites>FETCH-LOGICAL-c306t-b820883ba52f40e6958328bb486687df46ac321121876594293bda4ec9addda23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Zhu, Chuanbo</creatorcontrib><creatorcontrib>Chen, Min</creatorcontrib><creatorcontrib>Zhang, Sheng</creatorcontrib><creatorcontrib>Sun, Chao</creatorcontrib><creatorcontrib>Liang, Han</creatorcontrib><creatorcontrib>Liu, Yifan</creatorcontrib><creatorcontrib>Chen, Jincai</creatorcontrib><title>SKEAFN: Sentiment Knowledge Enhanced Attention Fusion Network for multimodal sentiment analysis</title><title>Information fusion</title><description>Multimodal sentiment analysis is an active research field that aims to recognize the user’s sentiment information from multimodal data. The primary challenge in this field is to develop a high-quality fusion framework that effectively addresses the heterogeneity among different modalities. However, prior research has primarily concentrated on intermodal interactions while neglecting the semantic sentiment information conveyed by words in the text modality. In this paper, we propose the Sentiment Knowledge Enhanced Attention Fusion Network (SKEAFN), a novel end-to-end fusion network that enhances multimodal fusion by incorporating additional sentiment knowledge representations from an external knowledge base. Firstly, we construct an external knowledge enhancement module to acquire additional representations for the text modality. Then, we design a text-guided interaction module that facilitates the interaction between text and the visual/acoustic modality. Finally, we propose a feature-wised attention fusion module that achieves multimodal fusion by dynamically adjusting the weights of the additional and each modality’s representations. We evaluate our method on three challenging multimodal sentiment analysis datasets: CMU-MOSI, CMU-MOSEI, and Twitter2019. The experiment results demonstrate that our model significantly outperforms the state-of-the-art models. The source code is publicly available at https://github.com/doubibobo/SKEAFN. •Propose a sentiment knowledge-enhanced attention fusion network (SKEAFN).•Build an additional knowledge graph to leverage explicit sentiment information.•Use a multi-head attention mechanism to model the interactions among modalities.•Develop feature-wised attention to adjust the contributions of multiple modalities.</description><subject>External knowledge</subject><subject>Multi-head attention</subject><subject>Multi-view learning</subject><subject>Multimodal sentiment analysis</subject><subject>Multiple feature fusion</subject><issn>1566-2535</issn><issn>1872-6305</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kM9KAzEQxoMoWKtv4CEvsDV_NmnWg1BKq9JSD9VzyCZZTd0mkmwtfXuzrHj0MjPM8H3M9wPgFqMJRpjf7SbON80hTQgitF9VTJyBERZTUnCK2HmeGecFYZRdgquUdgjhKaJ4BOR2tZgtN_dwa33n9rnAlQ_H1pp3Cxf-Q3ltDZx1XX8OHi4PqW8b2x1D_IRNiHB_aLMyGNXC9GeivGpPyaVrcNGoNtmb3z4Gb8vF6_ypWL88Ps9n60JTxLuiFgQJQWvFSFMiy3MASkRdl4JzMTVNyZWmBGOSM3FWlaSitVGl1ZUyxihCx6AcfHUMKUXbyK_o9iqeJEayhyR3coAke0hygJRlD4PM5t--nY0yaWf7zC5a3UkT3P8GPxjuctA</recordid><startdate>202312</startdate><enddate>202312</enddate><creator>Zhu, Chuanbo</creator><creator>Chen, Min</creator><creator>Zhang, Sheng</creator><creator>Sun, Chao</creator><creator>Liang, Han</creator><creator>Liu, Yifan</creator><creator>Chen, Jincai</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202312</creationdate><title>SKEAFN: Sentiment Knowledge Enhanced Attention Fusion Network for multimodal sentiment analysis</title><author>Zhu, Chuanbo ; Chen, Min ; Zhang, Sheng ; Sun, Chao ; Liang, Han ; Liu, Yifan ; Chen, Jincai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-b820883ba52f40e6958328bb486687df46ac321121876594293bda4ec9addda23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>External knowledge</topic><topic>Multi-head attention</topic><topic>Multi-view learning</topic><topic>Multimodal sentiment analysis</topic><topic>Multiple feature fusion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Chuanbo</creatorcontrib><creatorcontrib>Chen, Min</creatorcontrib><creatorcontrib>Zhang, Sheng</creatorcontrib><creatorcontrib>Sun, Chao</creatorcontrib><creatorcontrib>Liang, Han</creatorcontrib><creatorcontrib>Liu, Yifan</creatorcontrib><creatorcontrib>Chen, Jincai</creatorcontrib><collection>CrossRef</collection><jtitle>Information fusion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Chuanbo</au><au>Chen, Min</au><au>Zhang, Sheng</au><au>Sun, Chao</au><au>Liang, Han</au><au>Liu, Yifan</au><au>Chen, Jincai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SKEAFN: Sentiment Knowledge Enhanced Attention Fusion Network for multimodal sentiment analysis</atitle><jtitle>Information fusion</jtitle><date>2023-12</date><risdate>2023</risdate><volume>100</volume><spage>101958</spage><pages>101958-</pages><artnum>101958</artnum><issn>1566-2535</issn><eissn>1872-6305</eissn><abstract>Multimodal sentiment analysis is an active research field that aims to recognize the user’s sentiment information from multimodal data. The primary challenge in this field is to develop a high-quality fusion framework that effectively addresses the heterogeneity among different modalities. However, prior research has primarily concentrated on intermodal interactions while neglecting the semantic sentiment information conveyed by words in the text modality. In this paper, we propose the Sentiment Knowledge Enhanced Attention Fusion Network (SKEAFN), a novel end-to-end fusion network that enhances multimodal fusion by incorporating additional sentiment knowledge representations from an external knowledge base. Firstly, we construct an external knowledge enhancement module to acquire additional representations for the text modality. Then, we design a text-guided interaction module that facilitates the interaction between text and the visual/acoustic modality. Finally, we propose a feature-wised attention fusion module that achieves multimodal fusion by dynamically adjusting the weights of the additional and each modality’s representations. We evaluate our method on three challenging multimodal sentiment analysis datasets: CMU-MOSI, CMU-MOSEI, and Twitter2019. The experiment results demonstrate that our model significantly outperforms the state-of-the-art models. The source code is publicly available at https://github.com/doubibobo/SKEAFN. •Propose a sentiment knowledge-enhanced attention fusion network (SKEAFN).•Build an additional knowledge graph to leverage explicit sentiment information.•Use a multi-head attention mechanism to model the interactions among modalities.•Develop feature-wised attention to adjust the contributions of multiple modalities.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.inffus.2023.101958</doi></addata></record>
fulltext fulltext
identifier ISSN: 1566-2535
ispartof Information fusion, 2023-12, Vol.100, p.101958, Article 101958
issn 1566-2535
1872-6305
language eng
recordid cdi_crossref_primary_10_1016_j_inffus_2023_101958
source ScienceDirect Freedom Collection
subjects External knowledge
Multi-head attention
Multi-view learning
Multimodal sentiment analysis
Multiple feature fusion
title SKEAFN: Sentiment Knowledge Enhanced Attention Fusion Network for multimodal sentiment analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A48%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SKEAFN:%20Sentiment%20Knowledge%20Enhanced%20Attention%20Fusion%20Network%20for%20multimodal%20sentiment%20analysis&rft.jtitle=Information%20fusion&rft.au=Zhu,%20Chuanbo&rft.date=2023-12&rft.volume=100&rft.spage=101958&rft.pages=101958-&rft.artnum=101958&rft.issn=1566-2535&rft.eissn=1872-6305&rft_id=info:doi/10.1016/j.inffus.2023.101958&rft_dat=%3Celsevier_cross%3ES1566253523002749%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c306t-b820883ba52f40e6958328bb486687df46ac321121876594293bda4ec9addda23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true