Loading…

Few-shot object detection: Research advances and challenges

Object detection as a subfield within computer vision has achieved remarkable progress, which aims to accurately identify and locate a specific object from images or videos. Such methods rely on large-scale labeled training samples for each object category to ensure accurate detection, but obtaining...

Full description

Saved in:
Bibliographic Details
Published in:Information fusion 2024-07, Vol.107, p.102307, Article 102307
Main Authors: Xin, Zhimeng, Chen, Shiming, Wu, Tianxu, Shao, Yuanjie, Ding, Weiping, You, Xinge
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Object detection as a subfield within computer vision has achieved remarkable progress, which aims to accurately identify and locate a specific object from images or videos. Such methods rely on large-scale labeled training samples for each object category to ensure accurate detection, but obtaining extensive annotated data is a labor-intensive and expensive process in many real-world scenarios. To tackle this challenge, researchers have explored few-shot object detection (FSOD) that combines few-shot learning and object detection techniques to rapidly adapt to novel objects with limited annotated samples. This paper presents a comprehensive survey to review the significant advancements in the field of FSOD in recent years and summarize the existing challenges and solutions. Specifically, we first introduce the background and definition of FSOD to emphasize potential value in advancing the field of computer vision. We then propose a novel FSOD taxonomy method and survey the plentifully remarkable FSOD algorithms based on this fact to report a comprehensive overview that facilitates a deeper understanding of the FSOD problem and the development of innovative solutions. Finally, we discuss the advantages and limitations of these algorithms to summarize the challenges, potential research direction, and development trend of object detection in the data scarcity scenario. •A novel taxonomy scheme for the existing few-shot object detection techniques.•A comprehensive review of few-shot object detection techniques for a deeper understanding.•Quantitative analysis of selected methods for challenges and potential research direction.
ISSN:1566-2535
1872-6305
DOI:10.1016/j.inffus.2024.102307