Loading…

Segmentation of acute ischemic stroke lesions based on deep feature fusion

Acute ischemic stroke (AIS) is a common brain disease worldwide, and diagnosing AIS requires effectively utilizing information from multiple Computed Tomography Perfusion (CTP) maps. As far as we know, most methods independently process each CTP map or fail to fully utilize medical prior information...

Full description

Saved in:
Bibliographic Details
Published in:Information fusion 2025-02, Vol.114, p.102724, Article 102724
Main Authors: Li, Linfeng, Liu, Jiayang, Chen, Shanxiong, Wang, Jingjie, Li, Yongmei, Liao, Qihua, Zhang, Lin, Peng, Xihua, Pu, Xu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c185t-f04042bfddc20a3cb3b7c81e91308d1d9f135438bbf0f97bcaf9504bd0d87f283
container_end_page
container_issue
container_start_page 102724
container_title Information fusion
container_volume 114
creator Li, Linfeng
Liu, Jiayang
Chen, Shanxiong
Wang, Jingjie
Li, Yongmei
Liao, Qihua
Zhang, Lin
Peng, Xihua
Pu, Xu
description Acute ischemic stroke (AIS) is a common brain disease worldwide, and diagnosing AIS requires effectively utilizing information from multiple Computed Tomography Perfusion (CTP) maps. As far as we know, most methods independently process each CTP map or fail to fully utilize medical prior information when integrating the information from CTP maps. Considering the characteristics of AIS lesions, we propose a method for efficient information fusion of CTP maps to achieve accurate segmentation results. We propose Window Multi-Head Cross-Attention Net (WMHCA-Net), which employs a multi-path U-shaped architecture for encoding and decoding. After encoding, multiple independent windowed cross-attentions are used to deeply integrate information from different maps. During the decoding phase, a Channel Cross-Attention (CCA) module is utilized to enhance information recovery during upsampling. We also added a segmentation optimization module to optimize low-resolution segmentation results, improving the overall performance. Finally, experimental results demonstrate that our proposed method exhibits strong balance and excels across multiple metrics. It can provide more accurate AIS lesion segmentation results to assist doctors in evaluating patient conditions. Our code are available at https://github.com/MTVLab/WMHCA-Net. [Display omitted] •We propose a novel and effective mid-fusion structure to enhance the capture of lesion information in the region.•We designed a segmentation network that extracts CT perfusion information and performs efficient information recovery.•We collected 104 private acute stroke cases and passed the medical ethics test.
doi_str_mv 10.1016/j.inffus.2024.102724
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_inffus_2024_102724</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1566253524005025</els_id><sourcerecordid>S1566253524005025</sourcerecordid><originalsourceid>FETCH-LOGICAL-c185t-f04042bfddc20a3cb3b7c81e91308d1d9f135438bbf0f97bcaf9504bd0d87f283</originalsourceid><addsrcrecordid>eNp9kMlOAzEQRH0AiRD4Aw7-gQntZbYLEopYFYkDcLa8tMFDMhPZDhJ_j6PhzKmlrq7q0iPkisGKAWuuh1UYvT-kFQcuy4q3XJ6QBaubpuK1qM_IeUoDAGtBsAV5fsWPHY5Z5zCNdPJU20NGGpL9xF2wNOU4fSHdYip6okYndLRcOsQ99ajzISIt74p6QU693ia8_JtL8n5_97Z-rDYvD0_r201lWVfnyoMEyY13znLQwhphWtsx7JmAzjHXeyZqKTpjPPi-NVb7vgZpHLiu9bwTSyLnXBunlCJ6tY9hp-OPYqCODNSgZgbqyEDNDIrtZrZh6fYdMKpkA44WXYhos3JT-D_gF-waalc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Segmentation of acute ischemic stroke lesions based on deep feature fusion</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Li, Linfeng ; Liu, Jiayang ; Chen, Shanxiong ; Wang, Jingjie ; Li, Yongmei ; Liao, Qihua ; Zhang, Lin ; Peng, Xihua ; Pu, Xu</creator><creatorcontrib>Li, Linfeng ; Liu, Jiayang ; Chen, Shanxiong ; Wang, Jingjie ; Li, Yongmei ; Liao, Qihua ; Zhang, Lin ; Peng, Xihua ; Pu, Xu</creatorcontrib><description>Acute ischemic stroke (AIS) is a common brain disease worldwide, and diagnosing AIS requires effectively utilizing information from multiple Computed Tomography Perfusion (CTP) maps. As far as we know, most methods independently process each CTP map or fail to fully utilize medical prior information when integrating the information from CTP maps. Considering the characteristics of AIS lesions, we propose a method for efficient information fusion of CTP maps to achieve accurate segmentation results. We propose Window Multi-Head Cross-Attention Net (WMHCA-Net), which employs a multi-path U-shaped architecture for encoding and decoding. After encoding, multiple independent windowed cross-attentions are used to deeply integrate information from different maps. During the decoding phase, a Channel Cross-Attention (CCA) module is utilized to enhance information recovery during upsampling. We also added a segmentation optimization module to optimize low-resolution segmentation results, improving the overall performance. Finally, experimental results demonstrate that our proposed method exhibits strong balance and excels across multiple metrics. It can provide more accurate AIS lesion segmentation results to assist doctors in evaluating patient conditions. Our code are available at https://github.com/MTVLab/WMHCA-Net. [Display omitted] •We propose a novel and effective mid-fusion structure to enhance the capture of lesion information in the region.•We designed a segmentation network that extracts CT perfusion information and performs efficient information recovery.•We collected 104 private acute stroke cases and passed the medical ethics test.</description><identifier>ISSN: 1566-2535</identifier><identifier>DOI: 10.1016/j.inffus.2024.102724</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Acute ischemic stroke ; Computed tomography perfusion ; Convolutional neural network ; Lesion segmentation ; Multi-feature fusion</subject><ispartof>Information fusion, 2025-02, Vol.114, p.102724, Article 102724</ispartof><rights>2024 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c185t-f04042bfddc20a3cb3b7c81e91308d1d9f135438bbf0f97bcaf9504bd0d87f283</cites><orcidid>0000-0001-6179-8333</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Li, Linfeng</creatorcontrib><creatorcontrib>Liu, Jiayang</creatorcontrib><creatorcontrib>Chen, Shanxiong</creatorcontrib><creatorcontrib>Wang, Jingjie</creatorcontrib><creatorcontrib>Li, Yongmei</creatorcontrib><creatorcontrib>Liao, Qihua</creatorcontrib><creatorcontrib>Zhang, Lin</creatorcontrib><creatorcontrib>Peng, Xihua</creatorcontrib><creatorcontrib>Pu, Xu</creatorcontrib><title>Segmentation of acute ischemic stroke lesions based on deep feature fusion</title><title>Information fusion</title><description>Acute ischemic stroke (AIS) is a common brain disease worldwide, and diagnosing AIS requires effectively utilizing information from multiple Computed Tomography Perfusion (CTP) maps. As far as we know, most methods independently process each CTP map or fail to fully utilize medical prior information when integrating the information from CTP maps. Considering the characteristics of AIS lesions, we propose a method for efficient information fusion of CTP maps to achieve accurate segmentation results. We propose Window Multi-Head Cross-Attention Net (WMHCA-Net), which employs a multi-path U-shaped architecture for encoding and decoding. After encoding, multiple independent windowed cross-attentions are used to deeply integrate information from different maps. During the decoding phase, a Channel Cross-Attention (CCA) module is utilized to enhance information recovery during upsampling. We also added a segmentation optimization module to optimize low-resolution segmentation results, improving the overall performance. Finally, experimental results demonstrate that our proposed method exhibits strong balance and excels across multiple metrics. It can provide more accurate AIS lesion segmentation results to assist doctors in evaluating patient conditions. Our code are available at https://github.com/MTVLab/WMHCA-Net. [Display omitted] •We propose a novel and effective mid-fusion structure to enhance the capture of lesion information in the region.•We designed a segmentation network that extracts CT perfusion information and performs efficient information recovery.•We collected 104 private acute stroke cases and passed the medical ethics test.</description><subject>Acute ischemic stroke</subject><subject>Computed tomography perfusion</subject><subject>Convolutional neural network</subject><subject>Lesion segmentation</subject><subject>Multi-feature fusion</subject><issn>1566-2535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9kMlOAzEQRH0AiRD4Aw7-gQntZbYLEopYFYkDcLa8tMFDMhPZDhJ_j6PhzKmlrq7q0iPkisGKAWuuh1UYvT-kFQcuy4q3XJ6QBaubpuK1qM_IeUoDAGtBsAV5fsWPHY5Z5zCNdPJU20NGGpL9xF2wNOU4fSHdYip6okYndLRcOsQ99ajzISIt74p6QU693ia8_JtL8n5_97Z-rDYvD0_r201lWVfnyoMEyY13znLQwhphWtsx7JmAzjHXeyZqKTpjPPi-NVb7vgZpHLiu9bwTSyLnXBunlCJ6tY9hp-OPYqCODNSgZgbqyEDNDIrtZrZh6fYdMKpkA44WXYhos3JT-D_gF-waalc</recordid><startdate>202502</startdate><enddate>202502</enddate><creator>Li, Linfeng</creator><creator>Liu, Jiayang</creator><creator>Chen, Shanxiong</creator><creator>Wang, Jingjie</creator><creator>Li, Yongmei</creator><creator>Liao, Qihua</creator><creator>Zhang, Lin</creator><creator>Peng, Xihua</creator><creator>Pu, Xu</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6179-8333</orcidid></search><sort><creationdate>202502</creationdate><title>Segmentation of acute ischemic stroke lesions based on deep feature fusion</title><author>Li, Linfeng ; Liu, Jiayang ; Chen, Shanxiong ; Wang, Jingjie ; Li, Yongmei ; Liao, Qihua ; Zhang, Lin ; Peng, Xihua ; Pu, Xu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c185t-f04042bfddc20a3cb3b7c81e91308d1d9f135438bbf0f97bcaf9504bd0d87f283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Acute ischemic stroke</topic><topic>Computed tomography perfusion</topic><topic>Convolutional neural network</topic><topic>Lesion segmentation</topic><topic>Multi-feature fusion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Linfeng</creatorcontrib><creatorcontrib>Liu, Jiayang</creatorcontrib><creatorcontrib>Chen, Shanxiong</creatorcontrib><creatorcontrib>Wang, Jingjie</creatorcontrib><creatorcontrib>Li, Yongmei</creatorcontrib><creatorcontrib>Liao, Qihua</creatorcontrib><creatorcontrib>Zhang, Lin</creatorcontrib><creatorcontrib>Peng, Xihua</creatorcontrib><creatorcontrib>Pu, Xu</creatorcontrib><collection>CrossRef</collection><jtitle>Information fusion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Linfeng</au><au>Liu, Jiayang</au><au>Chen, Shanxiong</au><au>Wang, Jingjie</au><au>Li, Yongmei</au><au>Liao, Qihua</au><au>Zhang, Lin</au><au>Peng, Xihua</au><au>Pu, Xu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Segmentation of acute ischemic stroke lesions based on deep feature fusion</atitle><jtitle>Information fusion</jtitle><date>2025-02</date><risdate>2025</risdate><volume>114</volume><spage>102724</spage><pages>102724-</pages><artnum>102724</artnum><issn>1566-2535</issn><abstract>Acute ischemic stroke (AIS) is a common brain disease worldwide, and diagnosing AIS requires effectively utilizing information from multiple Computed Tomography Perfusion (CTP) maps. As far as we know, most methods independently process each CTP map or fail to fully utilize medical prior information when integrating the information from CTP maps. Considering the characteristics of AIS lesions, we propose a method for efficient information fusion of CTP maps to achieve accurate segmentation results. We propose Window Multi-Head Cross-Attention Net (WMHCA-Net), which employs a multi-path U-shaped architecture for encoding and decoding. After encoding, multiple independent windowed cross-attentions are used to deeply integrate information from different maps. During the decoding phase, a Channel Cross-Attention (CCA) module is utilized to enhance information recovery during upsampling. We also added a segmentation optimization module to optimize low-resolution segmentation results, improving the overall performance. Finally, experimental results demonstrate that our proposed method exhibits strong balance and excels across multiple metrics. It can provide more accurate AIS lesion segmentation results to assist doctors in evaluating patient conditions. Our code are available at https://github.com/MTVLab/WMHCA-Net. [Display omitted] •We propose a novel and effective mid-fusion structure to enhance the capture of lesion information in the region.•We designed a segmentation network that extracts CT perfusion information and performs efficient information recovery.•We collected 104 private acute stroke cases and passed the medical ethics test.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.inffus.2024.102724</doi><orcidid>https://orcid.org/0000-0001-6179-8333</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1566-2535
ispartof Information fusion, 2025-02, Vol.114, p.102724, Article 102724
issn 1566-2535
language eng
recordid cdi_crossref_primary_10_1016_j_inffus_2024_102724
source ScienceDirect Freedom Collection 2022-2024
subjects Acute ischemic stroke
Computed tomography perfusion
Convolutional neural network
Lesion segmentation
Multi-feature fusion
title Segmentation of acute ischemic stroke lesions based on deep feature fusion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A09%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Segmentation%20of%20acute%20ischemic%20stroke%20lesions%20based%20on%20deep%20feature%20fusion&rft.jtitle=Information%20fusion&rft.au=Li,%20Linfeng&rft.date=2025-02&rft.volume=114&rft.spage=102724&rft.pages=102724-&rft.artnum=102724&rft.issn=1566-2535&rft_id=info:doi/10.1016/j.inffus.2024.102724&rft_dat=%3Celsevier_cross%3ES1566253524005025%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c185t-f04042bfddc20a3cb3b7c81e91308d1d9f135438bbf0f97bcaf9504bd0d87f283%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true