Loading…

Thermal wave image deblurring based on depth residual network

•Proposed TWI deblurring with deep residual network and skip-connection structure.•Using inverse modeling approach created an artificial TWI deblurring dataset.•Comparisons to traditional image enhancement methods have been carried out. Thermal wave imaging is a nondestructive testing (NDT) technolo...

Full description

Saved in:
Bibliographic Details
Published in:Infrared physics & technology 2021-09, Vol.117, p.103847, Article 103847
Main Authors: Jiang, Haijun, Chen, Fei, Liu, Xining, Chen, Jesse, Zhang, Kai, Chen, Li
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c312t-f16e962050a6bd44339937b29279b43c5b334048fe8df35635ce0463ad2810ed3
cites cdi_FETCH-LOGICAL-c312t-f16e962050a6bd44339937b29279b43c5b334048fe8df35635ce0463ad2810ed3
container_end_page
container_issue
container_start_page 103847
container_title Infrared physics & technology
container_volume 117
creator Jiang, Haijun
Chen, Fei
Liu, Xining
Chen, Jesse
Zhang, Kai
Chen, Li
description •Proposed TWI deblurring with deep residual network and skip-connection structure.•Using inverse modeling approach created an artificial TWI deblurring dataset.•Comparisons to traditional image enhancement methods have been carried out. Thermal wave imaging is a nondestructive testing (NDT) technology widely used to detect defects for various materials. It is important for quality control purposes to be able to clearly define the sizes of the defective areas. Due to the diffusive nature of thermal waves the acquired images contain varying degrees of blur depending on the depth of the defects, which severely affects the ability to define the defects. Conventional edge enhancement algorithms are hardly to achieve desirable results. Using deep convolutional neural network, we designed a deep residual network based on an encoder-decoder structure. Through the depth residual and skip-connection structures, we can effectively solve the vanishing gradient problem and improve the ability of feature extraction. The experimental results demonstrate that the proposed method shows superior performance over conventional image enhancement algorithms by providing richer information with higher contrast and more details.
doi_str_mv 10.1016/j.infrared.2021.103847
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_infrared_2021_103847</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S135044952100219X</els_id><sourcerecordid>S135044952100219X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-f16e962050a6bd44339937b29279b43c5b334048fe8df35635ce0463ad2810ed3</originalsourceid><addsrcrecordid>eNqFkM1KAzEUhYMoWKuvIPMCU29-Z7IQlKJVKLip65BJ7rSp7UxJpi2-vSnVtat7OZxzOHyE3FOYUKDqYT0JXRttRD9hwGgWeS2qCzKidaVLYJW8zD-XUAqh5TW5SWkNOShAjcjjYoVxazfF0R6wCFu7xMJjs9nHGLpl0diEvui7rO2GVRExBb_P7g6HYx-_bslVazcJ737vmHy-viymb-X8Y_Y-fZ6XjlM2lC1VqBUDCVY1XgjOteZVwzSrdCO4kw3nAkTdYu1bLhWXDkEobj2rKaDnY6LOvS72KUVszS7mrfHbUDAnCGZt_iCYEwRzhpCDT-cg5nWHgNEkF7Bz6ENENxjfh_8qfgAeJGgj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Thermal wave image deblurring based on depth residual network</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Jiang, Haijun ; Chen, Fei ; Liu, Xining ; Chen, Jesse ; Zhang, Kai ; Chen, Li</creator><creatorcontrib>Jiang, Haijun ; Chen, Fei ; Liu, Xining ; Chen, Jesse ; Zhang, Kai ; Chen, Li</creatorcontrib><description>•Proposed TWI deblurring with deep residual network and skip-connection structure.•Using inverse modeling approach created an artificial TWI deblurring dataset.•Comparisons to traditional image enhancement methods have been carried out. Thermal wave imaging is a nondestructive testing (NDT) technology widely used to detect defects for various materials. It is important for quality control purposes to be able to clearly define the sizes of the defective areas. Due to the diffusive nature of thermal waves the acquired images contain varying degrees of blur depending on the depth of the defects, which severely affects the ability to define the defects. Conventional edge enhancement algorithms are hardly to achieve desirable results. Using deep convolutional neural network, we designed a deep residual network based on an encoder-decoder structure. Through the depth residual and skip-connection structures, we can effectively solve the vanishing gradient problem and improve the ability of feature extraction. The experimental results demonstrate that the proposed method shows superior performance over conventional image enhancement algorithms by providing richer information with higher contrast and more details.</description><identifier>ISSN: 1350-4495</identifier><identifier>EISSN: 1879-0275</identifier><identifier>DOI: 10.1016/j.infrared.2021.103847</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Depth residual network ; Encoder-Decoder ; Image deblurring ; Infrared thermography ; Thermal wave image</subject><ispartof>Infrared physics &amp; technology, 2021-09, Vol.117, p.103847, Article 103847</ispartof><rights>2021 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-f16e962050a6bd44339937b29279b43c5b334048fe8df35635ce0463ad2810ed3</citedby><cites>FETCH-LOGICAL-c312t-f16e962050a6bd44339937b29279b43c5b334048fe8df35635ce0463ad2810ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Jiang, Haijun</creatorcontrib><creatorcontrib>Chen, Fei</creatorcontrib><creatorcontrib>Liu, Xining</creatorcontrib><creatorcontrib>Chen, Jesse</creatorcontrib><creatorcontrib>Zhang, Kai</creatorcontrib><creatorcontrib>Chen, Li</creatorcontrib><title>Thermal wave image deblurring based on depth residual network</title><title>Infrared physics &amp; technology</title><description>•Proposed TWI deblurring with deep residual network and skip-connection structure.•Using inverse modeling approach created an artificial TWI deblurring dataset.•Comparisons to traditional image enhancement methods have been carried out. Thermal wave imaging is a nondestructive testing (NDT) technology widely used to detect defects for various materials. It is important for quality control purposes to be able to clearly define the sizes of the defective areas. Due to the diffusive nature of thermal waves the acquired images contain varying degrees of blur depending on the depth of the defects, which severely affects the ability to define the defects. Conventional edge enhancement algorithms are hardly to achieve desirable results. Using deep convolutional neural network, we designed a deep residual network based on an encoder-decoder structure. Through the depth residual and skip-connection structures, we can effectively solve the vanishing gradient problem and improve the ability of feature extraction. The experimental results demonstrate that the proposed method shows superior performance over conventional image enhancement algorithms by providing richer information with higher contrast and more details.</description><subject>Depth residual network</subject><subject>Encoder-Decoder</subject><subject>Image deblurring</subject><subject>Infrared thermography</subject><subject>Thermal wave image</subject><issn>1350-4495</issn><issn>1879-0275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkM1KAzEUhYMoWKuvIPMCU29-Z7IQlKJVKLip65BJ7rSp7UxJpi2-vSnVtat7OZxzOHyE3FOYUKDqYT0JXRttRD9hwGgWeS2qCzKidaVLYJW8zD-XUAqh5TW5SWkNOShAjcjjYoVxazfF0R6wCFu7xMJjs9nHGLpl0diEvui7rO2GVRExBb_P7g6HYx-_bslVazcJ737vmHy-viymb-X8Y_Y-fZ6XjlM2lC1VqBUDCVY1XgjOteZVwzSrdCO4kw3nAkTdYu1bLhWXDkEobj2rKaDnY6LOvS72KUVszS7mrfHbUDAnCGZt_iCYEwRzhpCDT-cg5nWHgNEkF7Bz6ENENxjfh_8qfgAeJGgj</recordid><startdate>202109</startdate><enddate>202109</enddate><creator>Jiang, Haijun</creator><creator>Chen, Fei</creator><creator>Liu, Xining</creator><creator>Chen, Jesse</creator><creator>Zhang, Kai</creator><creator>Chen, Li</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202109</creationdate><title>Thermal wave image deblurring based on depth residual network</title><author>Jiang, Haijun ; Chen, Fei ; Liu, Xining ; Chen, Jesse ; Zhang, Kai ; Chen, Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-f16e962050a6bd44339937b29279b43c5b334048fe8df35635ce0463ad2810ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Depth residual network</topic><topic>Encoder-Decoder</topic><topic>Image deblurring</topic><topic>Infrared thermography</topic><topic>Thermal wave image</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Haijun</creatorcontrib><creatorcontrib>Chen, Fei</creatorcontrib><creatorcontrib>Liu, Xining</creatorcontrib><creatorcontrib>Chen, Jesse</creatorcontrib><creatorcontrib>Zhang, Kai</creatorcontrib><creatorcontrib>Chen, Li</creatorcontrib><collection>CrossRef</collection><jtitle>Infrared physics &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Haijun</au><au>Chen, Fei</au><au>Liu, Xining</au><au>Chen, Jesse</au><au>Zhang, Kai</au><au>Chen, Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal wave image deblurring based on depth residual network</atitle><jtitle>Infrared physics &amp; technology</jtitle><date>2021-09</date><risdate>2021</risdate><volume>117</volume><spage>103847</spage><pages>103847-</pages><artnum>103847</artnum><issn>1350-4495</issn><eissn>1879-0275</eissn><abstract>•Proposed TWI deblurring with deep residual network and skip-connection structure.•Using inverse modeling approach created an artificial TWI deblurring dataset.•Comparisons to traditional image enhancement methods have been carried out. Thermal wave imaging is a nondestructive testing (NDT) technology widely used to detect defects for various materials. It is important for quality control purposes to be able to clearly define the sizes of the defective areas. Due to the diffusive nature of thermal waves the acquired images contain varying degrees of blur depending on the depth of the defects, which severely affects the ability to define the defects. Conventional edge enhancement algorithms are hardly to achieve desirable results. Using deep convolutional neural network, we designed a deep residual network based on an encoder-decoder structure. Through the depth residual and skip-connection structures, we can effectively solve the vanishing gradient problem and improve the ability of feature extraction. The experimental results demonstrate that the proposed method shows superior performance over conventional image enhancement algorithms by providing richer information with higher contrast and more details.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.infrared.2021.103847</doi></addata></record>
fulltext fulltext
identifier ISSN: 1350-4495
ispartof Infrared physics & technology, 2021-09, Vol.117, p.103847, Article 103847
issn 1350-4495
1879-0275
language eng
recordid cdi_crossref_primary_10_1016_j_infrared_2021_103847
source ScienceDirect Freedom Collection 2022-2024
subjects Depth residual network
Encoder-Decoder
Image deblurring
Infrared thermography
Thermal wave image
title Thermal wave image deblurring based on depth residual network
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A11%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20wave%20image%20deblurring%20based%20on%20depth%20residual%20network&rft.jtitle=Infrared%20physics%20&%20technology&rft.au=Jiang,%20Haijun&rft.date=2021-09&rft.volume=117&rft.spage=103847&rft.pages=103847-&rft.artnum=103847&rft.issn=1350-4495&rft.eissn=1879-0275&rft_id=info:doi/10.1016/j.infrared.2021.103847&rft_dat=%3Celsevier_cross%3ES135044952100219X%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c312t-f16e962050a6bd44339937b29279b43c5b334048fe8df35635ce0463ad2810ed3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true