Loading…

Combining possibilistic linear programming and fuzzy AHP for solving the multi-objective capacitated multi-facility location problem

The capacitated multi-facility location problem is a complex and imprecise decision-making problem which contains both quantitative and qualitative factors. In the literature, many objectives for optimizing many types of logistics networks are described: (i) minimization objectives such as cost, inv...

Full description

Saved in:
Bibliographic Details
Published in:Information sciences 2014-06, Vol.268, p.185-201
Main Authors: Ozgen, Dogan, Gulsun, Bahadir
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The capacitated multi-facility location problem is a complex and imprecise decision-making problem which contains both quantitative and qualitative factors. In the literature, many objectives for optimizing many types of logistics networks are described: (i) minimization objectives such as cost, inventory, transportation time, environmental impact, financial risk and (ii) maximization objectives such as profit, customer satisfaction, and flexibility and robustness. However, only a few papers have considered quantitative and qualitative factors together with imprecise methodologies. Unlike traditional cost-based optimization techniques, the approach proposed here evaluates these factors together while considering various viewpoints. Decision-makers must deal both factors together to model complex structure of real-world applications. In this paper, a two-phase possibilistic linear programming approach and a fuzzy analytical hierarchical process approach have been combined to optimize two objective functions (“minimum cost” and “maximum qualitative factors benefit”) in a four-stage (suppliers, plants, distribution centers, customers) supply chain network in the presence of vagueness. The results and findings of this method are illustrated with a numerical example, and the advantages of this methodology are discussed in the conclusion.
ISSN:0020-0255
1872-6291
DOI:10.1016/j.ins.2014.01.024