Loading…
Consolidated optimization algorithm for resource-constrained project scheduling problems
Resource-constrained project scheduling problems (RCPSPs) represent an important class of practical problems. Over the years, many optimization algorithms for solving them have been proposed, with their performances evaluated using well-established test instances with various levels of complexity. W...
Saved in:
Published in: | Information sciences 2017-12, Vol.418-419, p.346-362 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Resource-constrained project scheduling problems (RCPSPs) represent an important class of practical problems. Over the years, many optimization algorithms for solving them have been proposed, with their performances evaluated using well-established test instances with various levels of complexity. While it is desirable to obtain a high-quality solution and fast rate of convergence from an optimization algorithm, no single one performs well across the entire space of instances. Furthermore, even for a given algorithm, the optimal choice of its operators and control parameters may vary from one problem to another. To deal with this issue, we present a generic framework for solving RCPSPs in which various meta-heuristics, each with multiple search operators, are self-adaptively used during the search process and more emphasis is placed on the better-performing algorithms, and their underlying search operators. To further improve the rate of convergence and introduce good-quality solutions into the population earlier, a local search approach is introduced. The experimental results clearly indicate the capability of the proposed algorithm to attain high-quality results using a small population. Compared with several state-of-the-art algorithms, the proposed one delivers the best solutions for problems with 30 and 60 activities, and is very competitive for those involving 120 activities. |
---|---|
ISSN: | 0020-0255 1872-6291 |
DOI: | 10.1016/j.ins.2017.08.023 |