Loading…
A recommender system based on implicit feedback for selective dissemination of ebooks
In this study, we describe a recommendation system for electronic books. The approach is based on implicit feedback derived from user’s interaction with electronic content. User’s behavior is tracked through several indicators that are subsequently used to feed the recommendation engine. This compon...
Saved in:
Published in: | Information sciences 2018-10, Vol.467, p.87-98 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this study, we describe a recommendation system for electronic books. The approach is based on implicit feedback derived from user’s interaction with electronic content. User’s behavior is tracked through several indicators that are subsequently used to feed the recommendation engine. This component then provides an explicit rating for the material interacted with. The role of this engine could be modeled as a regression task where content is rated according to the mentioned indicators. In this context, we benchmark twelve popular machine learning algorithms to perform this final function and evaluate the quality of the output provided by the system. |
---|---|
ISSN: | 0020-0255 1872-6291 |
DOI: | 10.1016/j.ins.2018.07.068 |