Loading…

Robust multi-target regression with improved stochastic configuration networks and its applications

To improve the accuracy and robustness of stochastic configuration networks (SCNs) for resolving multi-target regression tasks, this paper proposes a robust modeling approach based on improved stochastic configuration networks. A parallel implementation of SCN models is designed to incrementally gen...

Full description

Saved in:
Bibliographic Details
Published in:Information sciences 2025-01, Vol.689, p.121480, Article 121480
Main Authors: Yan, Aijun, Hu, Kaicheng, Wang, Dianhui, Tang, Jian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c179t-e32320868195d190142f3652ad02ee2713aa617a3ee6050832082d0aaeb4b3de3
container_end_page
container_issue
container_start_page 121480
container_title Information sciences
container_volume 689
creator Yan, Aijun
Hu, Kaicheng
Wang, Dianhui
Tang, Jian
description To improve the accuracy and robustness of stochastic configuration networks (SCNs) for resolving multi-target regression tasks, this paper proposes a robust modeling approach based on improved stochastic configuration networks. A parallel implementation of SCN models is designed to incrementally generate the hidden nodes, which enhances the diversity of hidden layer mapping through information superposition and spanning connection. We employ an elastic net regularization model to sparsely constrain the model parameters to characterize the correlation among multiple targets. Then, the mixture Laplace distributions are used as the prior distribution of each target modeling error, and the output weights of the SCN model are re-evaluated by maximizing a posteriori estimation to enhance model’s robustness with respect to some uncertainties presented in training samples. The modelling performance of the proposed solution is tested on six standard datasets and the historical data of a municipal solid waste incineration process. The experimental results show that the proposed modeling technique has advantages in terms of both the prediction accuracy and the robustness.
doi_str_mv 10.1016/j.ins.2024.121480
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_ins_2024_121480</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002002552401394X</els_id><sourcerecordid>S002002552401394X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c179t-e32320868195d190142f3652ad02ee2713aa617a3ee6050832082d0aaeb4b3de3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRb0AiVL4AHb-gYSxnVfFClU8KlVCQrC2XHvSTmnjyHZb8fcklDWru5h7rkaHsTsBuQBR3W9z6mIuQRa5kKJo4IJNACRkIMvyil3HuAWAoq6qCbPvfnWIie8Pu0RZMmGNiQdcB4yRfMdPlDac9n3wR3Q8Jm83Jiay3PqupfUhmDTWOkwnH74iN53jlIbs-x3Z32O8YZet2UW8_csp-3x--pi_Zsu3l8X8cZlZUc9ShkoqCU3ViFnpxAxEIVtVldI4kIiyFsqYStRGIVZQQjOWpQNjcFWslEM1ZeK8a4OPMWCr-0B7E761AD2a0Vs9mNGjGX02MzAPZwaHx46EQUdL2Fl0FNAm7Tz9Q_8AeEVwAA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Robust multi-target regression with improved stochastic configuration networks and its applications</title><source>ScienceDirect Journals</source><creator>Yan, Aijun ; Hu, Kaicheng ; Wang, Dianhui ; Tang, Jian</creator><creatorcontrib>Yan, Aijun ; Hu, Kaicheng ; Wang, Dianhui ; Tang, Jian</creatorcontrib><description>To improve the accuracy and robustness of stochastic configuration networks (SCNs) for resolving multi-target regression tasks, this paper proposes a robust modeling approach based on improved stochastic configuration networks. A parallel implementation of SCN models is designed to incrementally generate the hidden nodes, which enhances the diversity of hidden layer mapping through information superposition and spanning connection. We employ an elastic net regularization model to sparsely constrain the model parameters to characterize the correlation among multiple targets. Then, the mixture Laplace distributions are used as the prior distribution of each target modeling error, and the output weights of the SCN model are re-evaluated by maximizing a posteriori estimation to enhance model’s robustness with respect to some uncertainties presented in training samples. The modelling performance of the proposed solution is tested on six standard datasets and the historical data of a municipal solid waste incineration process. The experimental results show that the proposed modeling technique has advantages in terms of both the prediction accuracy and the robustness.</description><identifier>ISSN: 0020-0255</identifier><identifier>DOI: 10.1016/j.ins.2024.121480</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Hidden layer parallel construction ; Matrix elastic net ; Multi-target regression ; Robust modeling ; Stochastic configuration networks</subject><ispartof>Information sciences, 2025-01, Vol.689, p.121480, Article 121480</ispartof><rights>2024 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c179t-e32320868195d190142f3652ad02ee2713aa617a3ee6050832082d0aaeb4b3de3</cites><orcidid>0000-0002-0649-860X ; 0000-0001-5726-7628 ; 0000-0003-2270-268X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yan, Aijun</creatorcontrib><creatorcontrib>Hu, Kaicheng</creatorcontrib><creatorcontrib>Wang, Dianhui</creatorcontrib><creatorcontrib>Tang, Jian</creatorcontrib><title>Robust multi-target regression with improved stochastic configuration networks and its applications</title><title>Information sciences</title><description>To improve the accuracy and robustness of stochastic configuration networks (SCNs) for resolving multi-target regression tasks, this paper proposes a robust modeling approach based on improved stochastic configuration networks. A parallel implementation of SCN models is designed to incrementally generate the hidden nodes, which enhances the diversity of hidden layer mapping through information superposition and spanning connection. We employ an elastic net regularization model to sparsely constrain the model parameters to characterize the correlation among multiple targets. Then, the mixture Laplace distributions are used as the prior distribution of each target modeling error, and the output weights of the SCN model are re-evaluated by maximizing a posteriori estimation to enhance model’s robustness with respect to some uncertainties presented in training samples. The modelling performance of the proposed solution is tested on six standard datasets and the historical data of a municipal solid waste incineration process. The experimental results show that the proposed modeling technique has advantages in terms of both the prediction accuracy and the robustness.</description><subject>Hidden layer parallel construction</subject><subject>Matrix elastic net</subject><subject>Multi-target regression</subject><subject>Robust modeling</subject><subject>Stochastic configuration networks</subject><issn>0020-0255</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRb0AiVL4AHb-gYSxnVfFClU8KlVCQrC2XHvSTmnjyHZb8fcklDWru5h7rkaHsTsBuQBR3W9z6mIuQRa5kKJo4IJNACRkIMvyil3HuAWAoq6qCbPvfnWIie8Pu0RZMmGNiQdcB4yRfMdPlDac9n3wR3Q8Jm83Jiay3PqupfUhmDTWOkwnH74iN53jlIbs-x3Z32O8YZet2UW8_csp-3x--pi_Zsu3l8X8cZlZUc9ShkoqCU3ViFnpxAxEIVtVldI4kIiyFsqYStRGIVZQQjOWpQNjcFWslEM1ZeK8a4OPMWCr-0B7E761AD2a0Vs9mNGjGX02MzAPZwaHx46EQUdL2Fl0FNAm7Tz9Q_8AeEVwAA</recordid><startdate>202501</startdate><enddate>202501</enddate><creator>Yan, Aijun</creator><creator>Hu, Kaicheng</creator><creator>Wang, Dianhui</creator><creator>Tang, Jian</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0649-860X</orcidid><orcidid>https://orcid.org/0000-0001-5726-7628</orcidid><orcidid>https://orcid.org/0000-0003-2270-268X</orcidid></search><sort><creationdate>202501</creationdate><title>Robust multi-target regression with improved stochastic configuration networks and its applications</title><author>Yan, Aijun ; Hu, Kaicheng ; Wang, Dianhui ; Tang, Jian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c179t-e32320868195d190142f3652ad02ee2713aa617a3ee6050832082d0aaeb4b3de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Hidden layer parallel construction</topic><topic>Matrix elastic net</topic><topic>Multi-target regression</topic><topic>Robust modeling</topic><topic>Stochastic configuration networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Aijun</creatorcontrib><creatorcontrib>Hu, Kaicheng</creatorcontrib><creatorcontrib>Wang, Dianhui</creatorcontrib><creatorcontrib>Tang, Jian</creatorcontrib><collection>CrossRef</collection><jtitle>Information sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Aijun</au><au>Hu, Kaicheng</au><au>Wang, Dianhui</au><au>Tang, Jian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust multi-target regression with improved stochastic configuration networks and its applications</atitle><jtitle>Information sciences</jtitle><date>2025-01</date><risdate>2025</risdate><volume>689</volume><spage>121480</spage><pages>121480-</pages><artnum>121480</artnum><issn>0020-0255</issn><abstract>To improve the accuracy and robustness of stochastic configuration networks (SCNs) for resolving multi-target regression tasks, this paper proposes a robust modeling approach based on improved stochastic configuration networks. A parallel implementation of SCN models is designed to incrementally generate the hidden nodes, which enhances the diversity of hidden layer mapping through information superposition and spanning connection. We employ an elastic net regularization model to sparsely constrain the model parameters to characterize the correlation among multiple targets. Then, the mixture Laplace distributions are used as the prior distribution of each target modeling error, and the output weights of the SCN model are re-evaluated by maximizing a posteriori estimation to enhance model’s robustness with respect to some uncertainties presented in training samples. The modelling performance of the proposed solution is tested on six standard datasets and the historical data of a municipal solid waste incineration process. The experimental results show that the proposed modeling technique has advantages in terms of both the prediction accuracy and the robustness.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.ins.2024.121480</doi><orcidid>https://orcid.org/0000-0002-0649-860X</orcidid><orcidid>https://orcid.org/0000-0001-5726-7628</orcidid><orcidid>https://orcid.org/0000-0003-2270-268X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0020-0255
ispartof Information sciences, 2025-01, Vol.689, p.121480, Article 121480
issn 0020-0255
language eng
recordid cdi_crossref_primary_10_1016_j_ins_2024_121480
source ScienceDirect Journals
subjects Hidden layer parallel construction
Matrix elastic net
Multi-target regression
Robust modeling
Stochastic configuration networks
title Robust multi-target regression with improved stochastic configuration networks and its applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A21%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20multi-target%20regression%20with%20improved%20stochastic%20configuration%20networks%20and%20its%20applications&rft.jtitle=Information%20sciences&rft.au=Yan,%20Aijun&rft.date=2025-01&rft.volume=689&rft.spage=121480&rft.pages=121480-&rft.artnum=121480&rft.issn=0020-0255&rft_id=info:doi/10.1016/j.ins.2024.121480&rft_dat=%3Celsevier_cross%3ES002002552401394X%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c179t-e32320868195d190142f3652ad02ee2713aa617a3ee6050832082d0aaeb4b3de3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true