Loading…

Insertion depth in power-weight trees

•Many real-world networks display attachment preference based on node age.•We introduce a random tree model with preferential attachment based on node index (age).•The form of index (age) preference is controlled by a real-valued parameter.•We study insertion depth in our attachment model and find t...

Full description

Saved in:
Bibliographic Details
Published in:Information processing letters 2022-06, Vol.176, p.106227, Article 106227
Main Authors: Lyon, Merritt, Mahmoud, Hosam
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c249t-3fd7c092c50afe737fcd1c348d87273e5a41fa260d2377e557cecc492609cd5d3
container_end_page
container_issue
container_start_page 106227
container_title Information processing letters
container_volume 176
creator Lyon, Merritt
Mahmoud, Hosam
description •Many real-world networks display attachment preference based on node age.•We introduce a random tree model with preferential attachment based on node index (age).•The form of index (age) preference is controlled by a real-valued parameter.•We study insertion depth in our attachment model and find that the behavior varies depending on the value of the parameter. We study the insertion depth in a class of nonuniform random recursive trees grown with an attachment preference for a power of the node index. The strength of index preference is controlled by a real-valued power parameter α; the model accommodates both young-age and old-age preference as specific cases. We find the exact probability law in terms of the Poisson-Binomial distribution, and consequently, the exact and asymptotic mean and variance. Under appropriate normalization, we derive concentration laws and limiting distributions. For α>−1, with logarithmic normalization of the depth, we have a normal limit. The case α=−1 is a critical point at which we retain a normal limit but under an iterated logarithm normalization. For these normal cases, Chen-Stein approximation gives a slow rate of convergence in the Wasserstein distance. The case α
doi_str_mv 10.1016/j.ipl.2021.106227
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_ipl_2021_106227</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020019021001423</els_id><sourcerecordid>S0020019021001423</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-3fd7c092c50afe737fcd1c348d87273e5a41fa260d2377e557cecc492609cd5d3</originalsourceid><addsrcrecordid>eNp9j01LxDAURYMoWEd_gLtuXKa-JG0zxZUMfgwMuNF1KC8vTsrYliQ4-O_NUNeuLu_CedzD2K2ASoBo74fKz4dKghT5bqXUZ6wQay15K0R3zgoACRxEB5fsKsYBANpa6YLdbcdIIflpLC3NaV_6sZynIwV-JP-5T2UKRPGaXbj-EOnmL1fs4_npffPKd28v283jjqOsu8SVsxqhk9hA70gr7dAKVPXa5iVaUdPXwvWyBSuV1tQ0Ggmx7nLToW2sWjGx_MUwxRjImTn4rz78GAHm5GkGkz3NydMsnpl5WBjKw749BRPR04hkfSBMxk7-H_oXSqNaHQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Insertion depth in power-weight trees</title><source>ScienceDirect Freedom Collection 2022-2024</source><source>Backfile Package - Computer Science (Legacy) [YCS]</source><source>Backfile Package - Mathematics (Legacy) [YMT]</source><creator>Lyon, Merritt ; Mahmoud, Hosam</creator><creatorcontrib>Lyon, Merritt ; Mahmoud, Hosam</creatorcontrib><description>•Many real-world networks display attachment preference based on node age.•We introduce a random tree model with preferential attachment based on node index (age).•The form of index (age) preference is controlled by a real-valued parameter.•We study insertion depth in our attachment model and find that the behavior varies depending on the value of the parameter. We study the insertion depth in a class of nonuniform random recursive trees grown with an attachment preference for a power of the node index. The strength of index preference is controlled by a real-valued power parameter α; the model accommodates both young-age and old-age preference as specific cases. We find the exact probability law in terms of the Poisson-Binomial distribution, and consequently, the exact and asymptotic mean and variance. Under appropriate normalization, we derive concentration laws and limiting distributions. For α&gt;−1, with logarithmic normalization of the depth, we have a normal limit. The case α=−1 is a critical point at which we retain a normal limit but under an iterated logarithm normalization. For these normal cases, Chen-Stein approximation gives a slow rate of convergence in the Wasserstein distance. The case α&lt;−1 is a phase that has a different behavior.</description><identifier>ISSN: 0020-0190</identifier><identifier>EISSN: 1872-6119</identifier><identifier>DOI: 10.1016/j.ipl.2021.106227</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Chen-Stein method ; Graph algorithms ; Insertion depth ; Preferential attachment ; Random tree</subject><ispartof>Information processing letters, 2022-06, Vol.176, p.106227, Article 106227</ispartof><rights>2021 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c249t-3fd7c092c50afe737fcd1c348d87273e5a41fa260d2377e557cecc492609cd5d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0020019021001423$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3416,3551,27905,27906,45953,45984</link.rule.ids></links><search><creatorcontrib>Lyon, Merritt</creatorcontrib><creatorcontrib>Mahmoud, Hosam</creatorcontrib><title>Insertion depth in power-weight trees</title><title>Information processing letters</title><description>•Many real-world networks display attachment preference based on node age.•We introduce a random tree model with preferential attachment based on node index (age).•The form of index (age) preference is controlled by a real-valued parameter.•We study insertion depth in our attachment model and find that the behavior varies depending on the value of the parameter. We study the insertion depth in a class of nonuniform random recursive trees grown with an attachment preference for a power of the node index. The strength of index preference is controlled by a real-valued power parameter α; the model accommodates both young-age and old-age preference as specific cases. We find the exact probability law in terms of the Poisson-Binomial distribution, and consequently, the exact and asymptotic mean and variance. Under appropriate normalization, we derive concentration laws and limiting distributions. For α&gt;−1, with logarithmic normalization of the depth, we have a normal limit. The case α=−1 is a critical point at which we retain a normal limit but under an iterated logarithm normalization. For these normal cases, Chen-Stein approximation gives a slow rate of convergence in the Wasserstein distance. The case α&lt;−1 is a phase that has a different behavior.</description><subject>Chen-Stein method</subject><subject>Graph algorithms</subject><subject>Insertion depth</subject><subject>Preferential attachment</subject><subject>Random tree</subject><issn>0020-0190</issn><issn>1872-6119</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9j01LxDAURYMoWEd_gLtuXKa-JG0zxZUMfgwMuNF1KC8vTsrYliQ4-O_NUNeuLu_CedzD2K2ASoBo74fKz4dKghT5bqXUZ6wQay15K0R3zgoACRxEB5fsKsYBANpa6YLdbcdIIflpLC3NaV_6sZynIwV-JP-5T2UKRPGaXbj-EOnmL1fs4_npffPKd28v283jjqOsu8SVsxqhk9hA70gr7dAKVPXa5iVaUdPXwvWyBSuV1tQ0Ggmx7nLToW2sWjGx_MUwxRjImTn4rz78GAHm5GkGkz3NydMsnpl5WBjKw749BRPR04hkfSBMxk7-H_oXSqNaHQ</recordid><startdate>202206</startdate><enddate>202206</enddate><creator>Lyon, Merritt</creator><creator>Mahmoud, Hosam</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202206</creationdate><title>Insertion depth in power-weight trees</title><author>Lyon, Merritt ; Mahmoud, Hosam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-3fd7c092c50afe737fcd1c348d87273e5a41fa260d2377e557cecc492609cd5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Chen-Stein method</topic><topic>Graph algorithms</topic><topic>Insertion depth</topic><topic>Preferential attachment</topic><topic>Random tree</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lyon, Merritt</creatorcontrib><creatorcontrib>Mahmoud, Hosam</creatorcontrib><collection>CrossRef</collection><jtitle>Information processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lyon, Merritt</au><au>Mahmoud, Hosam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insertion depth in power-weight trees</atitle><jtitle>Information processing letters</jtitle><date>2022-06</date><risdate>2022</risdate><volume>176</volume><spage>106227</spage><pages>106227-</pages><artnum>106227</artnum><issn>0020-0190</issn><eissn>1872-6119</eissn><abstract>•Many real-world networks display attachment preference based on node age.•We introduce a random tree model with preferential attachment based on node index (age).•The form of index (age) preference is controlled by a real-valued parameter.•We study insertion depth in our attachment model and find that the behavior varies depending on the value of the parameter. We study the insertion depth in a class of nonuniform random recursive trees grown with an attachment preference for a power of the node index. The strength of index preference is controlled by a real-valued power parameter α; the model accommodates both young-age and old-age preference as specific cases. We find the exact probability law in terms of the Poisson-Binomial distribution, and consequently, the exact and asymptotic mean and variance. Under appropriate normalization, we derive concentration laws and limiting distributions. For α&gt;−1, with logarithmic normalization of the depth, we have a normal limit. The case α=−1 is a critical point at which we retain a normal limit but under an iterated logarithm normalization. For these normal cases, Chen-Stein approximation gives a slow rate of convergence in the Wasserstein distance. The case α&lt;−1 is a phase that has a different behavior.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.ipl.2021.106227</doi></addata></record>
fulltext fulltext
identifier ISSN: 0020-0190
ispartof Information processing letters, 2022-06, Vol.176, p.106227, Article 106227
issn 0020-0190
1872-6119
language eng
recordid cdi_crossref_primary_10_1016_j_ipl_2021_106227
source ScienceDirect Freedom Collection 2022-2024; Backfile Package - Computer Science (Legacy) [YCS]; Backfile Package - Mathematics (Legacy) [YMT]
subjects Chen-Stein method
Graph algorithms
Insertion depth
Preferential attachment
Random tree
title Insertion depth in power-weight trees
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T07%3A21%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insertion%20depth%20in%20power-weight%20trees&rft.jtitle=Information%20processing%20letters&rft.au=Lyon,%20Merritt&rft.date=2022-06&rft.volume=176&rft.spage=106227&rft.pages=106227-&rft.artnum=106227&rft.issn=0020-0190&rft.eissn=1872-6119&rft_id=info:doi/10.1016/j.ipl.2021.106227&rft_dat=%3Celsevier_cross%3ES0020019021001423%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c249t-3fd7c092c50afe737fcd1c348d87273e5a41fa260d2377e557cecc492609cd5d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true