Loading…

Word automatic groups of nilpotency class 2

We consider word automaticity for groups that are nilpotent of class 2 and have exponent a prime p. We show that the infinitely generated free group in this variety is not word automatic. In contrast, the infinite extra-special p-group Ep is word automatic, as well as an intermediate group Hp which...

Full description

Saved in:
Bibliographic Details
Published in:Information processing letters 2024-01, Vol.183, p.106426, Article 106426
Main Authors: Nies, André, Stephan, Frank
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c292t-a35ed586c64131fb684a8e6d2de2714f863f7a931d390f658da727f82f5afe3f3
container_end_page
container_issue
container_start_page 106426
container_title Information processing letters
container_volume 183
creator Nies, André
Stephan, Frank
description We consider word automaticity for groups that are nilpotent of class 2 and have exponent a prime p. We show that the infinitely generated free group in this variety is not word automatic. In contrast, the infinite extra-special p-group Ep is word automatic, as well as an intermediate group Hp which has an infinite centre. In the last section we introduce a method for showing automaticity of central extensions of abelian groups via co-cycles. •We study word automaticity in the variety of groups of nilpotency class 2 and exponent p.•The free group of infinite rank is not word automatic.•An infinite extra-special p-group is word automatic.•We introduce a construction of word-automatic groups via co-cycles.
doi_str_mv 10.1016/j.ipl.2023.106426
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_ipl_2023_106426</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020019023000698</els_id><sourcerecordid>S0020019023000698</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-a35ed586c64131fb684a8e6d2de2714f863f7a931d390f658da727f82f5afe3f3</originalsourceid><addsrcrecordid>eNp9j01LxDAURYMoWEd_gLvspTUvaZMUVzLoKAy4UVyGmA9J6UxK0hHm35uhrl1dHtzzuAehWyANEOD3QxOmsaGEsnLzlvIzVIEUtOYA_TmqCKGkJtCTS3SV80BIKTFRobvPmCzWhznu9BwM_k7xMGUcPd6HcYqz25sjNqPOGdNrdOH1mN3NX67Qx_PT-_ql3r5tXteP29rQns61Zp2zneSGt8DAf3HZaum4pdZRAa2XnHmhewaW9cTzTlotqPCS-k57xzxbIVj-mhRzTs6rKYWdTkcFRJ1s1aCKrTrZqsW2MA8L48qwn-CSyiaU8c6G5MysbAz_0L-MqlwH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Word automatic groups of nilpotency class 2</title><source>Elsevier</source><source>Backfile Package - Computer Science (Legacy) [YCS]</source><source>Backfile Package - Mathematics (Legacy) [YMT]</source><creator>Nies, André ; Stephan, Frank</creator><creatorcontrib>Nies, André ; Stephan, Frank</creatorcontrib><description>We consider word automaticity for groups that are nilpotent of class 2 and have exponent a prime p. We show that the infinitely generated free group in this variety is not word automatic. In contrast, the infinite extra-special p-group Ep is word automatic, as well as an intermediate group Hp which has an infinite centre. In the last section we introduce a method for showing automaticity of central extensions of abelian groups via co-cycles. •We study word automaticity in the variety of groups of nilpotency class 2 and exponent p.•The free group of infinite rank is not word automatic.•An infinite extra-special p-group is word automatic.•We introduce a construction of word-automatic groups via co-cycles.</description><identifier>ISSN: 0020-0190</identifier><identifier>EISSN: 1872-6119</identifier><identifier>DOI: 10.1016/j.ipl.2023.106426</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>formal language ; nilpotent group ; word automaticity</subject><ispartof>Information processing letters, 2024-01, Vol.183, p.106426, Article 106426</ispartof><rights>2023 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c292t-a35ed586c64131fb684a8e6d2de2714f863f7a931d390f658da727f82f5afe3f3</cites><orcidid>0000-0002-0666-5180</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0020019023000698$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3428,3563,27923,27924,45971,46002</link.rule.ids></links><search><creatorcontrib>Nies, André</creatorcontrib><creatorcontrib>Stephan, Frank</creatorcontrib><title>Word automatic groups of nilpotency class 2</title><title>Information processing letters</title><description>We consider word automaticity for groups that are nilpotent of class 2 and have exponent a prime p. We show that the infinitely generated free group in this variety is not word automatic. In contrast, the infinite extra-special p-group Ep is word automatic, as well as an intermediate group Hp which has an infinite centre. In the last section we introduce a method for showing automaticity of central extensions of abelian groups via co-cycles. •We study word automaticity in the variety of groups of nilpotency class 2 and exponent p.•The free group of infinite rank is not word automatic.•An infinite extra-special p-group is word automatic.•We introduce a construction of word-automatic groups via co-cycles.</description><subject>formal language</subject><subject>nilpotent group</subject><subject>word automaticity</subject><issn>0020-0190</issn><issn>1872-6119</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9j01LxDAURYMoWEd_gLvspTUvaZMUVzLoKAy4UVyGmA9J6UxK0hHm35uhrl1dHtzzuAehWyANEOD3QxOmsaGEsnLzlvIzVIEUtOYA_TmqCKGkJtCTS3SV80BIKTFRobvPmCzWhznu9BwM_k7xMGUcPd6HcYqz25sjNqPOGdNrdOH1mN3NX67Qx_PT-_ql3r5tXteP29rQns61Zp2zneSGt8DAf3HZaum4pdZRAa2XnHmhewaW9cTzTlotqPCS-k57xzxbIVj-mhRzTs6rKYWdTkcFRJ1s1aCKrTrZqsW2MA8L48qwn-CSyiaU8c6G5MysbAz_0L-MqlwH</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Nies, André</creator><creator>Stephan, Frank</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0666-5180</orcidid></search><sort><creationdate>202401</creationdate><title>Word automatic groups of nilpotency class 2</title><author>Nies, André ; Stephan, Frank</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-a35ed586c64131fb684a8e6d2de2714f863f7a931d390f658da727f82f5afe3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>formal language</topic><topic>nilpotent group</topic><topic>word automaticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nies, André</creatorcontrib><creatorcontrib>Stephan, Frank</creatorcontrib><collection>CrossRef</collection><jtitle>Information processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nies, André</au><au>Stephan, Frank</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Word automatic groups of nilpotency class 2</atitle><jtitle>Information processing letters</jtitle><date>2024-01</date><risdate>2024</risdate><volume>183</volume><spage>106426</spage><pages>106426-</pages><artnum>106426</artnum><issn>0020-0190</issn><eissn>1872-6119</eissn><abstract>We consider word automaticity for groups that are nilpotent of class 2 and have exponent a prime p. We show that the infinitely generated free group in this variety is not word automatic. In contrast, the infinite extra-special p-group Ep is word automatic, as well as an intermediate group Hp which has an infinite centre. In the last section we introduce a method for showing automaticity of central extensions of abelian groups via co-cycles. •We study word automaticity in the variety of groups of nilpotency class 2 and exponent p.•The free group of infinite rank is not word automatic.•An infinite extra-special p-group is word automatic.•We introduce a construction of word-automatic groups via co-cycles.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.ipl.2023.106426</doi><orcidid>https://orcid.org/0000-0002-0666-5180</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0020-0190
ispartof Information processing letters, 2024-01, Vol.183, p.106426, Article 106426
issn 0020-0190
1872-6119
language eng
recordid cdi_crossref_primary_10_1016_j_ipl_2023_106426
source Elsevier; Backfile Package - Computer Science (Legacy) [YCS]; Backfile Package - Mathematics (Legacy) [YMT]
subjects formal language
nilpotent group
word automaticity
title Word automatic groups of nilpotency class 2
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A01%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Word%20automatic%20groups%20of%20nilpotency%20class%202&rft.jtitle=Information%20processing%20letters&rft.au=Nies,%20Andr%C3%A9&rft.date=2024-01&rft.volume=183&rft.spage=106426&rft.pages=106426-&rft.artnum=106426&rft.issn=0020-0190&rft.eissn=1872-6119&rft_id=info:doi/10.1016/j.ipl.2023.106426&rft_dat=%3Celsevier_cross%3ES0020019023000698%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c292t-a35ed586c64131fb684a8e6d2de2714f863f7a931d390f658da727f82f5afe3f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true