Loading…

Bounding substreams in distributed stream processing

A common problem in distributed stream processing is to split a stream into finite chunks of messages (substreams) and to determine their boundaries: stateful streaming operators should clear outdated state; time window operators should release output after all elements within the specified time ran...

Full description

Saved in:
Bibliographic Details
Published in:Information systems (Oxford) 2023-07, Vol.117, p.102251, Article 102251
Main Authors: Trofimov, Artem, Sokolov, Nikita, Marshalkin, Nikita, Kuralenok, Igor, Novikov, Boris
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c247t-3cc8a11ce52af6f3c5842d3045eb7500591a6d488ed88e479cf7e259bdb5b7033
container_end_page
container_issue
container_start_page 102251
container_title Information systems (Oxford)
container_volume 117
creator Trofimov, Artem
Sokolov, Nikita
Marshalkin, Nikita
Kuralenok, Igor
Novikov, Boris
description A common problem in distributed stream processing is to split a stream into finite chunks of messages (substreams) and to determine their boundaries: stateful streaming operators should clear outdated state; time window operators should release output after all elements within the specified time range have arrived. Most state-of-the-art SPEs use punctuations to divide a stream into bounded substreams of messages. The punctuation approach is powerful but has limitations: it does not support cyclic dataflows, is poorly scalable in some cases due to intensive use of broadcasts, and becomes inefficient when the number of chunks or cluster size becomes significant. We introduce a new substream tracking technique called trAcker that overcomes the limits of punctuations. We experimentally evaluate the properties of trAcker in both synthetic and real-world environments. Experiments show that our technique is scalable, outperforms punctuations for a large number of substreams, and efficiently handles real-world cyclic dataflows. •Punctuations can be inefficient for substreams bounding due to high network overhead.•Propagation of substream termination events via an extra agent reduces network traffic.•Network traffic reduction improves the overall performance of stream processing tasks.•An extra agent can be distributed and may scale up to the required substreams number.
doi_str_mv 10.1016/j.is.2023.102251
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_is_2023_102251</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S030643792300087X</els_id><sourcerecordid>S030643792300087X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c247t-3cc8a11ce52af6f3c5842d3045eb7500591a6d488ed88e479cf7e259bdb5b7033</originalsourceid><addsrcrecordid>eNp1j09LxDAQxYMoWFfvHvsFWif_mtabLroKC170HNpkKiluu2RawW9vlnr1MAzvMb_hPcZuOZQceHU3lIFKAUImKYTmZyzjtZFFBaY6ZxlIqAolTXPJrogGABC6aTKmHqdl9GH8zGnpaI7YHigPY-5DEqFbZvT5aufHODkkSrfX7KJvvwhv_vaGfTw_vW9fiv3b7nX7sC-cUGYupHN1y7lDLdq-6qXTtRJegtLYGQ2gG95WXtU1-jTKNK43mGJ1vtOdASk3DNa_Lk5EEXt7jOHQxh_LwZ5a28EGsqfWdm2dkPsVwZTrO2C05AKODn2I6Gbrp_A__AsR218B</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bounding substreams in distributed stream processing</title><source>ScienceDirect Freedom Collection</source><creator>Trofimov, Artem ; Sokolov, Nikita ; Marshalkin, Nikita ; Kuralenok, Igor ; Novikov, Boris</creator><creatorcontrib>Trofimov, Artem ; Sokolov, Nikita ; Marshalkin, Nikita ; Kuralenok, Igor ; Novikov, Boris</creatorcontrib><description>A common problem in distributed stream processing is to split a stream into finite chunks of messages (substreams) and to determine their boundaries: stateful streaming operators should clear outdated state; time window operators should release output after all elements within the specified time range have arrived. Most state-of-the-art SPEs use punctuations to divide a stream into bounded substreams of messages. The punctuation approach is powerful but has limitations: it does not support cyclic dataflows, is poorly scalable in some cases due to intensive use of broadcasts, and becomes inefficient when the number of chunks or cluster size becomes significant. We introduce a new substream tracking technique called trAcker that overcomes the limits of punctuations. We experimentally evaluate the properties of trAcker in both synthetic and real-world environments. Experiments show that our technique is scalable, outperforms punctuations for a large number of substreams, and efficiently handles real-world cyclic dataflows. •Punctuations can be inefficient for substreams bounding due to high network overhead.•Propagation of substream termination events via an extra agent reduces network traffic.•Network traffic reduction improves the overall performance of stream processing tasks.•An extra agent can be distributed and may scale up to the required substreams number.</description><identifier>ISSN: 0306-4379</identifier><identifier>EISSN: 1873-6076</identifier><identifier>DOI: 10.1016/j.is.2023.102251</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Data streams ; Punctuations ; State management ; Stream join ; Substreams ; Watermarks</subject><ispartof>Information systems (Oxford), 2023-07, Vol.117, p.102251, Article 102251</ispartof><rights>2023 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c247t-3cc8a11ce52af6f3c5842d3045eb7500591a6d488ed88e479cf7e259bdb5b7033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Trofimov, Artem</creatorcontrib><creatorcontrib>Sokolov, Nikita</creatorcontrib><creatorcontrib>Marshalkin, Nikita</creatorcontrib><creatorcontrib>Kuralenok, Igor</creatorcontrib><creatorcontrib>Novikov, Boris</creatorcontrib><title>Bounding substreams in distributed stream processing</title><title>Information systems (Oxford)</title><description>A common problem in distributed stream processing is to split a stream into finite chunks of messages (substreams) and to determine their boundaries: stateful streaming operators should clear outdated state; time window operators should release output after all elements within the specified time range have arrived. Most state-of-the-art SPEs use punctuations to divide a stream into bounded substreams of messages. The punctuation approach is powerful but has limitations: it does not support cyclic dataflows, is poorly scalable in some cases due to intensive use of broadcasts, and becomes inefficient when the number of chunks or cluster size becomes significant. We introduce a new substream tracking technique called trAcker that overcomes the limits of punctuations. We experimentally evaluate the properties of trAcker in both synthetic and real-world environments. Experiments show that our technique is scalable, outperforms punctuations for a large number of substreams, and efficiently handles real-world cyclic dataflows. •Punctuations can be inefficient for substreams bounding due to high network overhead.•Propagation of substream termination events via an extra agent reduces network traffic.•Network traffic reduction improves the overall performance of stream processing tasks.•An extra agent can be distributed and may scale up to the required substreams number.</description><subject>Data streams</subject><subject>Punctuations</subject><subject>State management</subject><subject>Stream join</subject><subject>Substreams</subject><subject>Watermarks</subject><issn>0306-4379</issn><issn>1873-6076</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1j09LxDAQxYMoWFfvHvsFWif_mtabLroKC170HNpkKiluu2RawW9vlnr1MAzvMb_hPcZuOZQceHU3lIFKAUImKYTmZyzjtZFFBaY6ZxlIqAolTXPJrogGABC6aTKmHqdl9GH8zGnpaI7YHigPY-5DEqFbZvT5aufHODkkSrfX7KJvvwhv_vaGfTw_vW9fiv3b7nX7sC-cUGYupHN1y7lDLdq-6qXTtRJegtLYGQ2gG95WXtU1-jTKNK43mGJ1vtOdASk3DNa_Lk5EEXt7jOHQxh_LwZ5a28EGsqfWdm2dkPsVwZTrO2C05AKODn2I6Gbrp_A__AsR218B</recordid><startdate>202307</startdate><enddate>202307</enddate><creator>Trofimov, Artem</creator><creator>Sokolov, Nikita</creator><creator>Marshalkin, Nikita</creator><creator>Kuralenok, Igor</creator><creator>Novikov, Boris</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202307</creationdate><title>Bounding substreams in distributed stream processing</title><author>Trofimov, Artem ; Sokolov, Nikita ; Marshalkin, Nikita ; Kuralenok, Igor ; Novikov, Boris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c247t-3cc8a11ce52af6f3c5842d3045eb7500591a6d488ed88e479cf7e259bdb5b7033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Data streams</topic><topic>Punctuations</topic><topic>State management</topic><topic>Stream join</topic><topic>Substreams</topic><topic>Watermarks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trofimov, Artem</creatorcontrib><creatorcontrib>Sokolov, Nikita</creatorcontrib><creatorcontrib>Marshalkin, Nikita</creatorcontrib><creatorcontrib>Kuralenok, Igor</creatorcontrib><creatorcontrib>Novikov, Boris</creatorcontrib><collection>CrossRef</collection><jtitle>Information systems (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trofimov, Artem</au><au>Sokolov, Nikita</au><au>Marshalkin, Nikita</au><au>Kuralenok, Igor</au><au>Novikov, Boris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bounding substreams in distributed stream processing</atitle><jtitle>Information systems (Oxford)</jtitle><date>2023-07</date><risdate>2023</risdate><volume>117</volume><spage>102251</spage><pages>102251-</pages><artnum>102251</artnum><issn>0306-4379</issn><eissn>1873-6076</eissn><abstract>A common problem in distributed stream processing is to split a stream into finite chunks of messages (substreams) and to determine their boundaries: stateful streaming operators should clear outdated state; time window operators should release output after all elements within the specified time range have arrived. Most state-of-the-art SPEs use punctuations to divide a stream into bounded substreams of messages. The punctuation approach is powerful but has limitations: it does not support cyclic dataflows, is poorly scalable in some cases due to intensive use of broadcasts, and becomes inefficient when the number of chunks or cluster size becomes significant. We introduce a new substream tracking technique called trAcker that overcomes the limits of punctuations. We experimentally evaluate the properties of trAcker in both synthetic and real-world environments. Experiments show that our technique is scalable, outperforms punctuations for a large number of substreams, and efficiently handles real-world cyclic dataflows. •Punctuations can be inefficient for substreams bounding due to high network overhead.•Propagation of substream termination events via an extra agent reduces network traffic.•Network traffic reduction improves the overall performance of stream processing tasks.•An extra agent can be distributed and may scale up to the required substreams number.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.is.2023.102251</doi></addata></record>
fulltext fulltext
identifier ISSN: 0306-4379
ispartof Information systems (Oxford), 2023-07, Vol.117, p.102251, Article 102251
issn 0306-4379
1873-6076
language eng
recordid cdi_crossref_primary_10_1016_j_is_2023_102251
source ScienceDirect Freedom Collection
subjects Data streams
Punctuations
State management
Stream join
Substreams
Watermarks
title Bounding substreams in distributed stream processing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T17%3A03%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bounding%20substreams%20in%20distributed%20stream%20processing&rft.jtitle=Information%20systems%20(Oxford)&rft.au=Trofimov,%20Artem&rft.date=2023-07&rft.volume=117&rft.spage=102251&rft.pages=102251-&rft.artnum=102251&rft.issn=0306-4379&rft.eissn=1873-6076&rft_id=info:doi/10.1016/j.is.2023.102251&rft_dat=%3Celsevier_cross%3ES030643792300087X%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c247t-3cc8a11ce52af6f3c5842d3045eb7500591a6d488ed88e479cf7e259bdb5b7033%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true