Loading…
Robust registration for remote sensing images by combining and localizing feature- and area-based methods
Highly accurate registration is one of the essential requirements for numerous applications of remote sensing images. Toward this end, we have developed a robust algorithm by combining and localizing feature- and area-based methods. A block-weighted projective (BWP) transformation model is first emp...
Saved in:
Published in: | ISPRS journal of photogrammetry and remote sensing 2019-05, Vol.151, p.15-26 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Highly accurate registration is one of the essential requirements for numerous applications of remote sensing images. Toward this end, we have developed a robust algorithm by combining and localizing feature- and area-based methods. A block-weighted projective (BWP) transformation model is first employed to map the local geometric relationship with weighted feature points in the feature-based stage, for which the weight is determined by an inverse distance weighted (IDW) function. Subsequently, the outlier-insensitive (OIS) model aims to further optimize the registration in the area-based stage. Considering the inevitable outliers (e.g., cloud, noise, land-cover change), OIS integrates Huber estimation with the structure tensor (ST), which is an approach that is robust to residual errors and outliers while preserving edges. Four pairs of remote sensing images with varied terrain features were tested in the experiments. Compared with the-state-of-art algorithms, the proposed algorithm is more effective, in terms of both visual quality and quantitative evaluation. |
---|---|
ISSN: | 0924-2716 1872-8235 |
DOI: | 10.1016/j.isprsjprs.2019.03.002 |