Loading…

Robust registration for remote sensing images by combining and localizing feature- and area-based methods

Highly accurate registration is one of the essential requirements for numerous applications of remote sensing images. Toward this end, we have developed a robust algorithm by combining and localizing feature- and area-based methods. A block-weighted projective (BWP) transformation model is first emp...

Full description

Saved in:
Bibliographic Details
Published in:ISPRS journal of photogrammetry and remote sensing 2019-05, Vol.151, p.15-26
Main Authors: Feng, Ruitao, Du, Qingyun, Li, Xinghua, Shen, Huanfeng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Highly accurate registration is one of the essential requirements for numerous applications of remote sensing images. Toward this end, we have developed a robust algorithm by combining and localizing feature- and area-based methods. A block-weighted projective (BWP) transformation model is first employed to map the local geometric relationship with weighted feature points in the feature-based stage, for which the weight is determined by an inverse distance weighted (IDW) function. Subsequently, the outlier-insensitive (OIS) model aims to further optimize the registration in the area-based stage. Considering the inevitable outliers (e.g., cloud, noise, land-cover change), OIS integrates Huber estimation with the structure tensor (ST), which is an approach that is robust to residual errors and outliers while preserving edges. Four pairs of remote sensing images with varied terrain features were tested in the experiments. Compared with the-state-of-art algorithms, the proposed algorithm is more effective, in terms of both visual quality and quantitative evaluation.
ISSN:0924-2716
1872-8235
DOI:10.1016/j.isprsjprs.2019.03.002