Loading…

Development of a nonlinear FE modelling approach for FRP-strengthened RC beam-column connections

This paper reports on a numerical attempt toward developing a nonlinear finite element (FE) modelling approach to predict the inelastic behaviour of reinforced concrete (RC) beam-column connections retrofitted using externally bonded fibre reinforced polymer (FRP) composites. The reliability of the...

Full description

Saved in:
Bibliographic Details
Published in:Structures (Oxford) 2015-08, Vol.3, p.272-281
Main Authors: Baji, H., Eslami, A., Ronagh, H.R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper reports on a numerical attempt toward developing a nonlinear finite element (FE) modelling approach to predict the inelastic behaviour of reinforced concrete (RC) beam-column connections retrofitted using externally bonded fibre reinforced polymer (FRP) composites. The reliability of the modelling approach and analysis results is verified against a series of experimental tests conducted in the current study and available in the literature. These tests implemented two retrofitting schemes including web- and flange-bonded configurations; commonly used for retrofitting of the beam-column joints. The retrofitting method in all adopted experimental tests is aimed at relocating the plastic hinges away from the column face further into the beam. The FE results are compared with the experimental findings in terms of load–displacement curves, failure modes, and plastic hinge locations. A good agreement is observed between the FE results and experimental observations. It is concluded that the proposed FE analysis can be reliably used as a cost-effective tool to predict the elastic and inelastic behaviour of FRP retrofitted RC beam-column connection and to investigate the effect of parameters that are beyond the scope of the experimental tests.
ISSN:2352-0124
2352-0124
DOI:10.1016/j.istruc.2015.06.003