Loading…

Smart and autonomous monitoring of cracking in concrete structures with PZT sensor array-based hybrid sensing

Detecting microcracks in concrete structures is crucial for maintaining structural integrity; however, current methods often lack the precision, objectivity, and sensitivity needed for early-stage detection and monitoring. This study introduces a pioneering hybrid sensing approach that combines cohe...

Full description

Saved in:
Bibliographic Details
Published in:Structures (Oxford) 2024-10, Vol.68, p.107178, Article 107178
Main Authors: Narayanan, Arun, Duddi, Murali, Kocherla, Amarteja, KVL, Subramaniam
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c185t-ff493c915d90a461e08e8c476b8804e688de57b0558ca1de56eede30d53fec113
container_end_page
container_issue
container_start_page 107178
container_title Structures (Oxford)
container_volume 68
creator Narayanan, Arun
Duddi, Murali
Kocherla, Amarteja
KVL, Subramaniam
description Detecting microcracks in concrete structures is crucial for maintaining structural integrity; however, current methods often lack the precision, objectivity, and sensitivity needed for early-stage detection and monitoring. This study introduces a pioneering hybrid sensing approach that combines coherent and incoherent ultrasonic wave fields with surface-mounted PZT-based sensors, significantly advancing the state-of-the-art. The sensors are positioned at specified locations on a notched concrete beam and operated in the actuator-receiver (AR) mode, allowing for the manipulation of fracture width at the notch to achieve distinct degrees of damage. By evaluating the ultrasonic waves received from various AR configurations, we developed robust damage indices: the attenuation factor and diffusivity ratio. These indices provide objective metrics for evaluating the degree of damage, addressing the limitations of existing techniques. Key results demonstrate that the attenuation factor can detect crack widths as small as 10 µm at a 120 kHz frequency, surpassing traditional methods. Nevertheless, its sensitivity diminishes if the crack width exceeds 100 µm. Additionally, the diffusivity ratio remains sensitive to cracks beyond 200 µm and shows a substantial 40 % decrease even for non-visible fractures, offering a comprehensive assessment of fracture propagation. These advancements not only enhance early detection and monitoring precision but also offer a deeper understanding of fracture mechanics, paving the way for improved structural health monitoring and maintenance strategies.
doi_str_mv 10.1016/j.istruc.2024.107178
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_istruc_2024_107178</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2352012424013304</els_id><sourcerecordid>S2352012424013304</sourcerecordid><originalsourceid>FETCH-LOGICAL-c185t-ff493c915d90a461e08e8c476b8804e688de57b0558ca1de56eede30d53fec113</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EElXpH7DwD6TYiZO4GyRU8ZIqgUTZsLEce0JdiI3GDqh_37RhwYrVXM3jzswh5JKzOWe8utrOXUzYm3nOcjGkal7LEzLJizLPGM_F6R99TmYxbhljORdDdz0h3UunMVHtLdV9Cj50oY-0C96lgM6_09BSg9p8HLTz1ARvEBLQ487UI0T649KGPr-taQQfA1KNqHdZoyNYutk16OyxMjhckLNWf0aY_cYpeb27XS8fstXT_ePyZpUZLsuUta1YFGbBS7tgWlQcmARpRF01UjIBlZQWyrphZSmN5oOuACwUzJZFC4bzYkrE6GswxIjQqi90w6M7xZk6UFNbNVJTB2pqpDaMXY9jMNz27QBVNA68AesQTFI2uP8N9g0Sekg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Smart and autonomous monitoring of cracking in concrete structures with PZT sensor array-based hybrid sensing</title><source>Elsevier</source><creator>Narayanan, Arun ; Duddi, Murali ; Kocherla, Amarteja ; KVL, Subramaniam</creator><creatorcontrib>Narayanan, Arun ; Duddi, Murali ; Kocherla, Amarteja ; KVL, Subramaniam</creatorcontrib><description>Detecting microcracks in concrete structures is crucial for maintaining structural integrity; however, current methods often lack the precision, objectivity, and sensitivity needed for early-stage detection and monitoring. This study introduces a pioneering hybrid sensing approach that combines coherent and incoherent ultrasonic wave fields with surface-mounted PZT-based sensors, significantly advancing the state-of-the-art. The sensors are positioned at specified locations on a notched concrete beam and operated in the actuator-receiver (AR) mode, allowing for the manipulation of fracture width at the notch to achieve distinct degrees of damage. By evaluating the ultrasonic waves received from various AR configurations, we developed robust damage indices: the attenuation factor and diffusivity ratio. These indices provide objective metrics for evaluating the degree of damage, addressing the limitations of existing techniques. Key results demonstrate that the attenuation factor can detect crack widths as small as 10 µm at a 120 kHz frequency, surpassing traditional methods. Nevertheless, its sensitivity diminishes if the crack width exceeds 100 µm. Additionally, the diffusivity ratio remains sensitive to cracks beyond 200 µm and shows a substantial 40 % decrease even for non-visible fractures, offering a comprehensive assessment of fracture propagation. These advancements not only enhance early detection and monitoring precision but also offer a deeper understanding of fracture mechanics, paving the way for improved structural health monitoring and maintenance strategies.</description><identifier>ISSN: 2352-0124</identifier><identifier>EISSN: 2352-0124</identifier><identifier>DOI: 10.1016/j.istruc.2024.107178</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Concrete ; Diffuse ultrasonic ; Incoherent ; Micro-crack ; PZT ; Ultrasonic ; Wave propagation</subject><ispartof>Structures (Oxford), 2024-10, Vol.68, p.107178, Article 107178</ispartof><rights>2024 Institution of Structural Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c185t-ff493c915d90a461e08e8c476b8804e688de57b0558ca1de56eede30d53fec113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids></links><search><creatorcontrib>Narayanan, Arun</creatorcontrib><creatorcontrib>Duddi, Murali</creatorcontrib><creatorcontrib>Kocherla, Amarteja</creatorcontrib><creatorcontrib>KVL, Subramaniam</creatorcontrib><title>Smart and autonomous monitoring of cracking in concrete structures with PZT sensor array-based hybrid sensing</title><title>Structures (Oxford)</title><description>Detecting microcracks in concrete structures is crucial for maintaining structural integrity; however, current methods often lack the precision, objectivity, and sensitivity needed for early-stage detection and monitoring. This study introduces a pioneering hybrid sensing approach that combines coherent and incoherent ultrasonic wave fields with surface-mounted PZT-based sensors, significantly advancing the state-of-the-art. The sensors are positioned at specified locations on a notched concrete beam and operated in the actuator-receiver (AR) mode, allowing for the manipulation of fracture width at the notch to achieve distinct degrees of damage. By evaluating the ultrasonic waves received from various AR configurations, we developed robust damage indices: the attenuation factor and diffusivity ratio. These indices provide objective metrics for evaluating the degree of damage, addressing the limitations of existing techniques. Key results demonstrate that the attenuation factor can detect crack widths as small as 10 µm at a 120 kHz frequency, surpassing traditional methods. Nevertheless, its sensitivity diminishes if the crack width exceeds 100 µm. Additionally, the diffusivity ratio remains sensitive to cracks beyond 200 µm and shows a substantial 40 % decrease even for non-visible fractures, offering a comprehensive assessment of fracture propagation. These advancements not only enhance early detection and monitoring precision but also offer a deeper understanding of fracture mechanics, paving the way for improved structural health monitoring and maintenance strategies.</description><subject>Concrete</subject><subject>Diffuse ultrasonic</subject><subject>Incoherent</subject><subject>Micro-crack</subject><subject>PZT</subject><subject>Ultrasonic</subject><subject>Wave propagation</subject><issn>2352-0124</issn><issn>2352-0124</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EElXpH7DwD6TYiZO4GyRU8ZIqgUTZsLEce0JdiI3GDqh_37RhwYrVXM3jzswh5JKzOWe8utrOXUzYm3nOcjGkal7LEzLJizLPGM_F6R99TmYxbhljORdDdz0h3UunMVHtLdV9Cj50oY-0C96lgM6_09BSg9p8HLTz1ARvEBLQ487UI0T649KGPr-taQQfA1KNqHdZoyNYutk16OyxMjhckLNWf0aY_cYpeb27XS8fstXT_ePyZpUZLsuUta1YFGbBS7tgWlQcmARpRF01UjIBlZQWyrphZSmN5oOuACwUzJZFC4bzYkrE6GswxIjQqi90w6M7xZk6UFNbNVJTB2pqpDaMXY9jMNz27QBVNA68AesQTFI2uP8N9g0Sekg</recordid><startdate>202410</startdate><enddate>202410</enddate><creator>Narayanan, Arun</creator><creator>Duddi, Murali</creator><creator>Kocherla, Amarteja</creator><creator>KVL, Subramaniam</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202410</creationdate><title>Smart and autonomous monitoring of cracking in concrete structures with PZT sensor array-based hybrid sensing</title><author>Narayanan, Arun ; Duddi, Murali ; Kocherla, Amarteja ; KVL, Subramaniam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c185t-ff493c915d90a461e08e8c476b8804e688de57b0558ca1de56eede30d53fec113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Concrete</topic><topic>Diffuse ultrasonic</topic><topic>Incoherent</topic><topic>Micro-crack</topic><topic>PZT</topic><topic>Ultrasonic</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Narayanan, Arun</creatorcontrib><creatorcontrib>Duddi, Murali</creatorcontrib><creatorcontrib>Kocherla, Amarteja</creatorcontrib><creatorcontrib>KVL, Subramaniam</creatorcontrib><collection>CrossRef</collection><jtitle>Structures (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Narayanan, Arun</au><au>Duddi, Murali</au><au>Kocherla, Amarteja</au><au>KVL, Subramaniam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Smart and autonomous monitoring of cracking in concrete structures with PZT sensor array-based hybrid sensing</atitle><jtitle>Structures (Oxford)</jtitle><date>2024-10</date><risdate>2024</risdate><volume>68</volume><spage>107178</spage><pages>107178-</pages><artnum>107178</artnum><issn>2352-0124</issn><eissn>2352-0124</eissn><abstract>Detecting microcracks in concrete structures is crucial for maintaining structural integrity; however, current methods often lack the precision, objectivity, and sensitivity needed for early-stage detection and monitoring. This study introduces a pioneering hybrid sensing approach that combines coherent and incoherent ultrasonic wave fields with surface-mounted PZT-based sensors, significantly advancing the state-of-the-art. The sensors are positioned at specified locations on a notched concrete beam and operated in the actuator-receiver (AR) mode, allowing for the manipulation of fracture width at the notch to achieve distinct degrees of damage. By evaluating the ultrasonic waves received from various AR configurations, we developed robust damage indices: the attenuation factor and diffusivity ratio. These indices provide objective metrics for evaluating the degree of damage, addressing the limitations of existing techniques. Key results demonstrate that the attenuation factor can detect crack widths as small as 10 µm at a 120 kHz frequency, surpassing traditional methods. Nevertheless, its sensitivity diminishes if the crack width exceeds 100 µm. Additionally, the diffusivity ratio remains sensitive to cracks beyond 200 µm and shows a substantial 40 % decrease even for non-visible fractures, offering a comprehensive assessment of fracture propagation. These advancements not only enhance early detection and monitoring precision but also offer a deeper understanding of fracture mechanics, paving the way for improved structural health monitoring and maintenance strategies.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.istruc.2024.107178</doi></addata></record>
fulltext fulltext
identifier ISSN: 2352-0124
ispartof Structures (Oxford), 2024-10, Vol.68, p.107178, Article 107178
issn 2352-0124
2352-0124
language eng
recordid cdi_crossref_primary_10_1016_j_istruc_2024_107178
source Elsevier
subjects Concrete
Diffuse ultrasonic
Incoherent
Micro-crack
PZT
Ultrasonic
Wave propagation
title Smart and autonomous monitoring of cracking in concrete structures with PZT sensor array-based hybrid sensing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T01%3A26%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Smart%20and%20autonomous%20monitoring%20of%20cracking%20in%20concrete%20structures%20with%20PZT%20sensor%20array-based%20hybrid%20sensing&rft.jtitle=Structures%20(Oxford)&rft.au=Narayanan,%20Arun&rft.date=2024-10&rft.volume=68&rft.spage=107178&rft.pages=107178-&rft.artnum=107178&rft.issn=2352-0124&rft.eissn=2352-0124&rft_id=info:doi/10.1016/j.istruc.2024.107178&rft_dat=%3Celsevier_cross%3ES2352012424013304%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c185t-ff493c915d90a461e08e8c476b8804e688de57b0558ca1de56eede30d53fec113%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true