Loading…
Strongly canted antiferromagnetic ground state in Cu3(OH)2F4
An unique crystal structure of copper hydroxyl-fluorite, Cu3(OH)2F4, hosts the trimerized chains of both edge-sharing and corner-sharing CuO2F2 plaquettes. The results of the comprehensive study of this compound, including new synthetic route, measurements of specific heat, ac- and dc-susceptibility...
Saved in:
Published in: | Journal of alloys and compounds 2019-03, Vol.776, p.16-21 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An unique crystal structure of copper hydroxyl-fluorite, Cu3(OH)2F4, hosts the trimerized chains of both edge-sharing and corner-sharing CuO2F2 plaquettes. The results of the comprehensive study of this compound, including new synthetic route, measurements of specific heat, ac- and dc-susceptibility, pulsed field magnetization, electron spin resonance, muon spin rotation and relaxation and first principles calculations are presented. The data evidence magnetic phase transition at TC = 12.5 K into canted antiferromagnetic state which is due to antisymmetric Dzyaloshinskii-Moriya (DM) exchange interaction. No alteration of DM component stemming from the intrinsic features of the crystal lattice in Cu3(OH)2F4 results in unusually large spontaneous magnetization. At T |
---|---|
ISSN: | 0925-8388 1873-4669 |
DOI: | 10.1016/j.jallcom.2018.10.032 |