Loading…

Spinel-structured MnV2O4 @nitrogen-doped carbon microspheres for sodium ion batteries with ultra-long cycle stability

Vanadium oxide is provided with abundant redox centers for high theoretical capacity as anode of sodium-ion batteries (SIBs), but still has poor inherent conductivity and volume expansion leading to fast capacity decay during cycling. In the study, the manganese vanadate microspheres enclosed in nit...

Full description

Saved in:
Bibliographic Details
Published in:Journal of alloys and compounds 2023-10, Vol.959, p.170594, Article 170594
Main Authors: Jiang, Xinyue, Liu, Jinzhe, Zhang, Peilin, Wang, Weiwei, Zhou, Jiaojiao, Ye, Fangqi, Wang, Linping, Zhu, Bo, Chen, Luyang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c309t-a5a243703ea49e3c9c8ca6b4b18d7182c0d123fce90f5b0f5fc449758aa784453
cites cdi_FETCH-LOGICAL-c309t-a5a243703ea49e3c9c8ca6b4b18d7182c0d123fce90f5b0f5fc449758aa784453
container_end_page
container_issue
container_start_page 170594
container_title Journal of alloys and compounds
container_volume 959
creator Jiang, Xinyue
Liu, Jinzhe
Zhang, Peilin
Wang, Weiwei
Zhou, Jiaojiao
Ye, Fangqi
Wang, Linping
Zhu, Bo
Chen, Luyang
description Vanadium oxide is provided with abundant redox centers for high theoretical capacity as anode of sodium-ion batteries (SIBs), but still has poor inherent conductivity and volume expansion leading to fast capacity decay during cycling. In the study, the manganese vanadate microspheres enclosed in nitrogen-doped carbon layers (MnV2O4 @NC) are availably constructed via reflux vanadization of Mn glycerol precursor and in situ thermal decomposition. The MnV2O4 @NC microspheres shows excellent the long-cycle stability as anode materials for SIBs, remaining the specific capacity of 205 mAh g−1 at current of 1000 mA g−1 after nearly 4000 cycles. Due to the increased valence range of bimetallic oxides and three-dimensional channels of spinel structure, the cubic MnV2O4 encapsulated by carbon shell can effectively enhance charge transfer, optimize electronic structure, stabilize crystal structure, and improve cycle stability. These results disclose the prospects of vanadate-based spinel material in high performance SIBs. •Spinel manganese vanadate microspheres enclosed in N-doped carbon layers are synthesized through a convenient method.•The design of spinel structure enable MnV2O4 to enhance charge transport and stabilize crystals tructure.•MnV2O4 @NC hybrids hows excellent ultra-long cycle stability as anode for SIBs.
doi_str_mv 10.1016/j.jallcom.2023.170594
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_jallcom_2023_170594</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838823018972</els_id><sourcerecordid>S0925838823018972</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-a5a243703ea49e3c9c8ca6b4b18d7182c0d123fce90f5b0f5fc449758aa784453</originalsourceid><addsrcrecordid>eNqFkMtqwzAUREVpoWnaTyjoB-xKlmxLq7aEviAliz62QpavExnbMpLckr-vQ7Lv4jJwhxmGg9AtJSkltLhr01Z3nXF9mpGMpbQkueRnaEFFyRJeFPIcLYjM8kQwIS7RVQgtIYRKRhdo-hjtAF0Sop9MnDzU-H34zjYcPww2ereFIandOL-N9pUbcG-Nd2HcgYeAG-dxcLWdemxnr9Ixgrez8WvjDk9d9Drp3LDFZm86wCHqynY27q_RRaO7ADcnXaKv56fP1Wuy3ry8rR7XiWFExkTnOuOsJAw0l8CMNMLoouIVFXVJRWZITTPWGJCkyav5GsO5LHOhdSk4z9kS5cfew-bgoVGjt732e0WJOrBTrTqxUwd26shuzt0fczCP-7HgVTAWBgO19WCiqp39p-EP0799Sg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Spinel-structured MnV2O4 @nitrogen-doped carbon microspheres for sodium ion batteries with ultra-long cycle stability</title><source>ScienceDirect Freedom Collection</source><creator>Jiang, Xinyue ; Liu, Jinzhe ; Zhang, Peilin ; Wang, Weiwei ; Zhou, Jiaojiao ; Ye, Fangqi ; Wang, Linping ; Zhu, Bo ; Chen, Luyang</creator><creatorcontrib>Jiang, Xinyue ; Liu, Jinzhe ; Zhang, Peilin ; Wang, Weiwei ; Zhou, Jiaojiao ; Ye, Fangqi ; Wang, Linping ; Zhu, Bo ; Chen, Luyang</creatorcontrib><description>Vanadium oxide is provided with abundant redox centers for high theoretical capacity as anode of sodium-ion batteries (SIBs), but still has poor inherent conductivity and volume expansion leading to fast capacity decay during cycling. In the study, the manganese vanadate microspheres enclosed in nitrogen-doped carbon layers (MnV2O4 @NC) are availably constructed via reflux vanadization of Mn glycerol precursor and in situ thermal decomposition. The MnV2O4 @NC microspheres shows excellent the long-cycle stability as anode materials for SIBs, remaining the specific capacity of 205 mAh g−1 at current of 1000 mA g−1 after nearly 4000 cycles. Due to the increased valence range of bimetallic oxides and three-dimensional channels of spinel structure, the cubic MnV2O4 encapsulated by carbon shell can effectively enhance charge transfer, optimize electronic structure, stabilize crystal structure, and improve cycle stability. These results disclose the prospects of vanadate-based spinel material in high performance SIBs. •Spinel manganese vanadate microspheres enclosed in N-doped carbon layers are synthesized through a convenient method.•The design of spinel structure enable MnV2O4 to enhance charge transport and stabilize crystals tructure.•MnV2O4 @NC hybrids hows excellent ultra-long cycle stability as anode for SIBs.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2023.170594</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Bimetallic oxides ; Cubic spinel structure ; MnV2O4 ; N-doped carbon ; Sodium-ion batteries</subject><ispartof>Journal of alloys and compounds, 2023-10, Vol.959, p.170594, Article 170594</ispartof><rights>2023 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-a5a243703ea49e3c9c8ca6b4b18d7182c0d123fce90f5b0f5fc449758aa784453</citedby><cites>FETCH-LOGICAL-c309t-a5a243703ea49e3c9c8ca6b4b18d7182c0d123fce90f5b0f5fc449758aa784453</cites><orcidid>0009-0004-1210-6635 ; 0000-0002-7932-3181</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Jiang, Xinyue</creatorcontrib><creatorcontrib>Liu, Jinzhe</creatorcontrib><creatorcontrib>Zhang, Peilin</creatorcontrib><creatorcontrib>Wang, Weiwei</creatorcontrib><creatorcontrib>Zhou, Jiaojiao</creatorcontrib><creatorcontrib>Ye, Fangqi</creatorcontrib><creatorcontrib>Wang, Linping</creatorcontrib><creatorcontrib>Zhu, Bo</creatorcontrib><creatorcontrib>Chen, Luyang</creatorcontrib><title>Spinel-structured MnV2O4 @nitrogen-doped carbon microspheres for sodium ion batteries with ultra-long cycle stability</title><title>Journal of alloys and compounds</title><description>Vanadium oxide is provided with abundant redox centers for high theoretical capacity as anode of sodium-ion batteries (SIBs), but still has poor inherent conductivity and volume expansion leading to fast capacity decay during cycling. In the study, the manganese vanadate microspheres enclosed in nitrogen-doped carbon layers (MnV2O4 @NC) are availably constructed via reflux vanadization of Mn glycerol precursor and in situ thermal decomposition. The MnV2O4 @NC microspheres shows excellent the long-cycle stability as anode materials for SIBs, remaining the specific capacity of 205 mAh g−1 at current of 1000 mA g−1 after nearly 4000 cycles. Due to the increased valence range of bimetallic oxides and three-dimensional channels of spinel structure, the cubic MnV2O4 encapsulated by carbon shell can effectively enhance charge transfer, optimize electronic structure, stabilize crystal structure, and improve cycle stability. These results disclose the prospects of vanadate-based spinel material in high performance SIBs. •Spinel manganese vanadate microspheres enclosed in N-doped carbon layers are synthesized through a convenient method.•The design of spinel structure enable MnV2O4 to enhance charge transport and stabilize crystals tructure.•MnV2O4 @NC hybrids hows excellent ultra-long cycle stability as anode for SIBs.</description><subject>Bimetallic oxides</subject><subject>Cubic spinel structure</subject><subject>MnV2O4</subject><subject>N-doped carbon</subject><subject>Sodium-ion batteries</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkMtqwzAUREVpoWnaTyjoB-xKlmxLq7aEviAliz62QpavExnbMpLckr-vQ7Lv4jJwhxmGg9AtJSkltLhr01Z3nXF9mpGMpbQkueRnaEFFyRJeFPIcLYjM8kQwIS7RVQgtIYRKRhdo-hjtAF0Sop9MnDzU-H34zjYcPww2ereFIandOL-N9pUbcG-Nd2HcgYeAG-dxcLWdemxnr9Ixgrez8WvjDk9d9Drp3LDFZm86wCHqynY27q_RRaO7ADcnXaKv56fP1Wuy3ry8rR7XiWFExkTnOuOsJAw0l8CMNMLoouIVFXVJRWZITTPWGJCkyav5GsO5LHOhdSk4z9kS5cfew-bgoVGjt732e0WJOrBTrTqxUwd26shuzt0fczCP-7HgVTAWBgO19WCiqp39p-EP0799Sg</recordid><startdate>20231010</startdate><enddate>20231010</enddate><creator>Jiang, Xinyue</creator><creator>Liu, Jinzhe</creator><creator>Zhang, Peilin</creator><creator>Wang, Weiwei</creator><creator>Zhou, Jiaojiao</creator><creator>Ye, Fangqi</creator><creator>Wang, Linping</creator><creator>Zhu, Bo</creator><creator>Chen, Luyang</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0004-1210-6635</orcidid><orcidid>https://orcid.org/0000-0002-7932-3181</orcidid></search><sort><creationdate>20231010</creationdate><title>Spinel-structured MnV2O4 @nitrogen-doped carbon microspheres for sodium ion batteries with ultra-long cycle stability</title><author>Jiang, Xinyue ; Liu, Jinzhe ; Zhang, Peilin ; Wang, Weiwei ; Zhou, Jiaojiao ; Ye, Fangqi ; Wang, Linping ; Zhu, Bo ; Chen, Luyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-a5a243703ea49e3c9c8ca6b4b18d7182c0d123fce90f5b0f5fc449758aa784453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bimetallic oxides</topic><topic>Cubic spinel structure</topic><topic>MnV2O4</topic><topic>N-doped carbon</topic><topic>Sodium-ion batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Xinyue</creatorcontrib><creatorcontrib>Liu, Jinzhe</creatorcontrib><creatorcontrib>Zhang, Peilin</creatorcontrib><creatorcontrib>Wang, Weiwei</creatorcontrib><creatorcontrib>Zhou, Jiaojiao</creatorcontrib><creatorcontrib>Ye, Fangqi</creatorcontrib><creatorcontrib>Wang, Linping</creatorcontrib><creatorcontrib>Zhu, Bo</creatorcontrib><creatorcontrib>Chen, Luyang</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Xinyue</au><au>Liu, Jinzhe</au><au>Zhang, Peilin</au><au>Wang, Weiwei</au><au>Zhou, Jiaojiao</au><au>Ye, Fangqi</au><au>Wang, Linping</au><au>Zhu, Bo</au><au>Chen, Luyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spinel-structured MnV2O4 @nitrogen-doped carbon microspheres for sodium ion batteries with ultra-long cycle stability</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2023-10-10</date><risdate>2023</risdate><volume>959</volume><spage>170594</spage><pages>170594-</pages><artnum>170594</artnum><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>Vanadium oxide is provided with abundant redox centers for high theoretical capacity as anode of sodium-ion batteries (SIBs), but still has poor inherent conductivity and volume expansion leading to fast capacity decay during cycling. In the study, the manganese vanadate microspheres enclosed in nitrogen-doped carbon layers (MnV2O4 @NC) are availably constructed via reflux vanadization of Mn glycerol precursor and in situ thermal decomposition. The MnV2O4 @NC microspheres shows excellent the long-cycle stability as anode materials for SIBs, remaining the specific capacity of 205 mAh g−1 at current of 1000 mA g−1 after nearly 4000 cycles. Due to the increased valence range of bimetallic oxides and three-dimensional channels of spinel structure, the cubic MnV2O4 encapsulated by carbon shell can effectively enhance charge transfer, optimize electronic structure, stabilize crystal structure, and improve cycle stability. These results disclose the prospects of vanadate-based spinel material in high performance SIBs. •Spinel manganese vanadate microspheres enclosed in N-doped carbon layers are synthesized through a convenient method.•The design of spinel structure enable MnV2O4 to enhance charge transport and stabilize crystals tructure.•MnV2O4 @NC hybrids hows excellent ultra-long cycle stability as anode for SIBs.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2023.170594</doi><orcidid>https://orcid.org/0009-0004-1210-6635</orcidid><orcidid>https://orcid.org/0000-0002-7932-3181</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0925-8388
ispartof Journal of alloys and compounds, 2023-10, Vol.959, p.170594, Article 170594
issn 0925-8388
1873-4669
language eng
recordid cdi_crossref_primary_10_1016_j_jallcom_2023_170594
source ScienceDirect Freedom Collection
subjects Bimetallic oxides
Cubic spinel structure
MnV2O4
N-doped carbon
Sodium-ion batteries
title Spinel-structured MnV2O4 @nitrogen-doped carbon microspheres for sodium ion batteries with ultra-long cycle stability
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T05%3A57%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spinel-structured%20MnV2O4%20@nitrogen-doped%20carbon%20microspheres%20for%20sodium%20ion%20batteries%20with%20ultra-long%20cycle%20stability&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Jiang,%20Xinyue&rft.date=2023-10-10&rft.volume=959&rft.spage=170594&rft.pages=170594-&rft.artnum=170594&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2023.170594&rft_dat=%3Celsevier_cross%3ES0925838823018972%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c309t-a5a243703ea49e3c9c8ca6b4b18d7182c0d123fce90f5b0f5fc449758aa784453%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true