Loading…

Amorphous/crystalline NiFe LDH hierarchical nanostructure for large-current-density electrocatalytic water oxidation

Amorphous structure shows more catalytic active sites but poor conductivity towards oxygen evolution reaction (OER). Herein, we fabricated a novel three-dimensional (3D) self-supported NiFe layered double hydroxides (LDH) catalytic material with amorphous/ crystalline interface, aiming to obtain bot...

Full description

Saved in:
Bibliographic Details
Published in:Journal of alloys and compounds 2024-10, Vol.1002, p.175328, Article 175328
Main Authors: Li, Yilong, Li, Mingzhe, Xie, Chenxuan, Ling, Ziyu, Lv, Yuzhen, Chen, Kepi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c187t-c9f731c106409ca2dbc913bf91f27120e916c615ea61ead4c7cd6123f2469a4d3
container_end_page
container_issue
container_start_page 175328
container_title Journal of alloys and compounds
container_volume 1002
creator Li, Yilong
Li, Mingzhe
Xie, Chenxuan
Ling, Ziyu
Lv, Yuzhen
Chen, Kepi
description Amorphous structure shows more catalytic active sites but poor conductivity towards oxygen evolution reaction (OER). Herein, we fabricated a novel three-dimensional (3D) self-supported NiFe layered double hydroxides (LDH) catalytic material with amorphous/ crystalline interface, aiming to obtain both excellent catalytic activity and conductivity. This homogeneous hierarchical structure exhibits a high catalytic activity and robustness, giving the industrially required current density of 1000 mA cm−2 at an ultralow overpotential of 359.8 mV with 240-hour stability in 1 M KOH. In-situ electrochemical tests reveal that the amorphous/crystalline interface boosts the intermediates evolution and OER kinetics, which might be ascribed to considerable active sites and fast charge transfer. Moreover, the 3D structure has unique superhydrophilicity and superaerophobicity, which can further accelerate the electrolyte penetration, facilitate the bubbles desorption from the electrode, enhance mass transport, and thus improve OER performance at large current densities. This work provides a feasible way to develop high-performance electrocatalytic material via constructing homogeneous amorphous/crystalline interface. •Amorphous/crystalline NiFe LDH heterostructure was successfully synthesized.•Heterostructure interface boosts the OER activity and stability of NiFe LDH.•Catalyst yields a low overpotential of 359.8 mV to drive 1000 mA cm-2 in 1 M KOH.•Catalyst exhibits 240-h stability at 1000 mA cm-2 with retention rate of 98 %.
doi_str_mv 10.1016/j.jallcom.2024.175328
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_jallcom_2024_175328</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838824019157</els_id><sourcerecordid>S0925838824019157</sourcerecordid><originalsourceid>FETCH-LOGICAL-c187t-c9f731c106409ca2dbc913bf91f27120e916c615ea61ead4c7cd6123f2469a4d3</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEuXxCUj-gRSPkzrxClW8ilTBBtaWmUyoqzSuxi7Qvyeo7Fnd1T269whxBWoKCsz1err2fY9xM9VKV1OoZ6VujsQEmrosKmPssZgoq2dFUzbNqThLaa2UAlvCROT5JvJ2FXfpGnmf8ggKA8nn8EByebeQq0DsGVcBfS8HP8SUeYd5xyS7yLL3_EEF7phpyEVLQwp5L6knzBzRj7h9Dii_fCaW8Tu0Poc4XIiTzveJLv_yXLw93L_eLorly-PT7XxZ4Dg9F2i7ugQEZSpl0ev2HS2U752FTtegFVkwaGBG3gD5tsIaWwO67HRlrK_a8lzMDlzkmBJT57YcNp73DpT7VefW7k-d-1XnDurG3s2hR-O4z9GASxhoQGoDj89cG8M_hB8_J33X</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Amorphous/crystalline NiFe LDH hierarchical nanostructure for large-current-density electrocatalytic water oxidation</title><source>Elsevier</source><creator>Li, Yilong ; Li, Mingzhe ; Xie, Chenxuan ; Ling, Ziyu ; Lv, Yuzhen ; Chen, Kepi</creator><creatorcontrib>Li, Yilong ; Li, Mingzhe ; Xie, Chenxuan ; Ling, Ziyu ; Lv, Yuzhen ; Chen, Kepi</creatorcontrib><description>Amorphous structure shows more catalytic active sites but poor conductivity towards oxygen evolution reaction (OER). Herein, we fabricated a novel three-dimensional (3D) self-supported NiFe layered double hydroxides (LDH) catalytic material with amorphous/ crystalline interface, aiming to obtain both excellent catalytic activity and conductivity. This homogeneous hierarchical structure exhibits a high catalytic activity and robustness, giving the industrially required current density of 1000 mA cm−2 at an ultralow overpotential of 359.8 mV with 240-hour stability in 1 M KOH. In-situ electrochemical tests reveal that the amorphous/crystalline interface boosts the intermediates evolution and OER kinetics, which might be ascribed to considerable active sites and fast charge transfer. Moreover, the 3D structure has unique superhydrophilicity and superaerophobicity, which can further accelerate the electrolyte penetration, facilitate the bubbles desorption from the electrode, enhance mass transport, and thus improve OER performance at large current densities. This work provides a feasible way to develop high-performance electrocatalytic material via constructing homogeneous amorphous/crystalline interface. •Amorphous/crystalline NiFe LDH heterostructure was successfully synthesized.•Heterostructure interface boosts the OER activity and stability of NiFe LDH.•Catalyst yields a low overpotential of 359.8 mV to drive 1000 mA cm-2 in 1 M KOH.•Catalyst exhibits 240-h stability at 1000 mA cm-2 with retention rate of 98 %.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2024.175328</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Amorphous/crystalline interface ; Catalytic activity ; Large-current-density electrolysis ; NiFe LDH ; Oxygen evolution reaction</subject><ispartof>Journal of alloys and compounds, 2024-10, Vol.1002, p.175328, Article 175328</ispartof><rights>2024 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c187t-c9f731c106409ca2dbc913bf91f27120e916c615ea61ead4c7cd6123f2469a4d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Li, Yilong</creatorcontrib><creatorcontrib>Li, Mingzhe</creatorcontrib><creatorcontrib>Xie, Chenxuan</creatorcontrib><creatorcontrib>Ling, Ziyu</creatorcontrib><creatorcontrib>Lv, Yuzhen</creatorcontrib><creatorcontrib>Chen, Kepi</creatorcontrib><title>Amorphous/crystalline NiFe LDH hierarchical nanostructure for large-current-density electrocatalytic water oxidation</title><title>Journal of alloys and compounds</title><description>Amorphous structure shows more catalytic active sites but poor conductivity towards oxygen evolution reaction (OER). Herein, we fabricated a novel three-dimensional (3D) self-supported NiFe layered double hydroxides (LDH) catalytic material with amorphous/ crystalline interface, aiming to obtain both excellent catalytic activity and conductivity. This homogeneous hierarchical structure exhibits a high catalytic activity and robustness, giving the industrially required current density of 1000 mA cm−2 at an ultralow overpotential of 359.8 mV with 240-hour stability in 1 M KOH. In-situ electrochemical tests reveal that the amorphous/crystalline interface boosts the intermediates evolution and OER kinetics, which might be ascribed to considerable active sites and fast charge transfer. Moreover, the 3D structure has unique superhydrophilicity and superaerophobicity, which can further accelerate the electrolyte penetration, facilitate the bubbles desorption from the electrode, enhance mass transport, and thus improve OER performance at large current densities. This work provides a feasible way to develop high-performance electrocatalytic material via constructing homogeneous amorphous/crystalline interface. •Amorphous/crystalline NiFe LDH heterostructure was successfully synthesized.•Heterostructure interface boosts the OER activity and stability of NiFe LDH.•Catalyst yields a low overpotential of 359.8 mV to drive 1000 mA cm-2 in 1 M KOH.•Catalyst exhibits 240-h stability at 1000 mA cm-2 with retention rate of 98 %.</description><subject>Amorphous/crystalline interface</subject><subject>Catalytic activity</subject><subject>Large-current-density electrolysis</subject><subject>NiFe LDH</subject><subject>Oxygen evolution reaction</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEuXxCUj-gRSPkzrxClW8ilTBBtaWmUyoqzSuxi7Qvyeo7Fnd1T269whxBWoKCsz1err2fY9xM9VKV1OoZ6VujsQEmrosKmPssZgoq2dFUzbNqThLaa2UAlvCROT5JvJ2FXfpGnmf8ggKA8nn8EByebeQq0DsGVcBfS8HP8SUeYd5xyS7yLL3_EEF7phpyEVLQwp5L6knzBzRj7h9Dii_fCaW8Tu0Poc4XIiTzveJLv_yXLw93L_eLorly-PT7XxZ4Dg9F2i7ugQEZSpl0ev2HS2U752FTtegFVkwaGBG3gD5tsIaWwO67HRlrK_a8lzMDlzkmBJT57YcNp73DpT7VefW7k-d-1XnDurG3s2hR-O4z9GASxhoQGoDj89cG8M_hB8_J33X</recordid><startdate>20241015</startdate><enddate>20241015</enddate><creator>Li, Yilong</creator><creator>Li, Mingzhe</creator><creator>Xie, Chenxuan</creator><creator>Ling, Ziyu</creator><creator>Lv, Yuzhen</creator><creator>Chen, Kepi</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20241015</creationdate><title>Amorphous/crystalline NiFe LDH hierarchical nanostructure for large-current-density electrocatalytic water oxidation</title><author>Li, Yilong ; Li, Mingzhe ; Xie, Chenxuan ; Ling, Ziyu ; Lv, Yuzhen ; Chen, Kepi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c187t-c9f731c106409ca2dbc913bf91f27120e916c615ea61ead4c7cd6123f2469a4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Amorphous/crystalline interface</topic><topic>Catalytic activity</topic><topic>Large-current-density electrolysis</topic><topic>NiFe LDH</topic><topic>Oxygen evolution reaction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yilong</creatorcontrib><creatorcontrib>Li, Mingzhe</creatorcontrib><creatorcontrib>Xie, Chenxuan</creatorcontrib><creatorcontrib>Ling, Ziyu</creatorcontrib><creatorcontrib>Lv, Yuzhen</creatorcontrib><creatorcontrib>Chen, Kepi</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yilong</au><au>Li, Mingzhe</au><au>Xie, Chenxuan</au><au>Ling, Ziyu</au><au>Lv, Yuzhen</au><au>Chen, Kepi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Amorphous/crystalline NiFe LDH hierarchical nanostructure for large-current-density electrocatalytic water oxidation</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2024-10-15</date><risdate>2024</risdate><volume>1002</volume><spage>175328</spage><pages>175328-</pages><artnum>175328</artnum><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>Amorphous structure shows more catalytic active sites but poor conductivity towards oxygen evolution reaction (OER). Herein, we fabricated a novel three-dimensional (3D) self-supported NiFe layered double hydroxides (LDH) catalytic material with amorphous/ crystalline interface, aiming to obtain both excellent catalytic activity and conductivity. This homogeneous hierarchical structure exhibits a high catalytic activity and robustness, giving the industrially required current density of 1000 mA cm−2 at an ultralow overpotential of 359.8 mV with 240-hour stability in 1 M KOH. In-situ electrochemical tests reveal that the amorphous/crystalline interface boosts the intermediates evolution and OER kinetics, which might be ascribed to considerable active sites and fast charge transfer. Moreover, the 3D structure has unique superhydrophilicity and superaerophobicity, which can further accelerate the electrolyte penetration, facilitate the bubbles desorption from the electrode, enhance mass transport, and thus improve OER performance at large current densities. This work provides a feasible way to develop high-performance electrocatalytic material via constructing homogeneous amorphous/crystalline interface. •Amorphous/crystalline NiFe LDH heterostructure was successfully synthesized.•Heterostructure interface boosts the OER activity and stability of NiFe LDH.•Catalyst yields a low overpotential of 359.8 mV to drive 1000 mA cm-2 in 1 M KOH.•Catalyst exhibits 240-h stability at 1000 mA cm-2 with retention rate of 98 %.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2024.175328</doi></addata></record>
fulltext fulltext
identifier ISSN: 0925-8388
ispartof Journal of alloys and compounds, 2024-10, Vol.1002, p.175328, Article 175328
issn 0925-8388
1873-4669
language eng
recordid cdi_crossref_primary_10_1016_j_jallcom_2024_175328
source Elsevier
subjects Amorphous/crystalline interface
Catalytic activity
Large-current-density electrolysis
NiFe LDH
Oxygen evolution reaction
title Amorphous/crystalline NiFe LDH hierarchical nanostructure for large-current-density electrocatalytic water oxidation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T22%3A45%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Amorphous/crystalline%20NiFe%20LDH%20hierarchical%20nanostructure%20for%20large-current-density%20electrocatalytic%20water%20oxidation&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Li,%20Yilong&rft.date=2024-10-15&rft.volume=1002&rft.spage=175328&rft.pages=175328-&rft.artnum=175328&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2024.175328&rft_dat=%3Celsevier_cross%3ES0925838824019157%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c187t-c9f731c106409ca2dbc913bf91f27120e916c615ea61ead4c7cd6123f2469a4d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true