Loading…

A novel approach to enhancing performance and endurance in GeS2 OTS devices using amorphous carbon doped W2N electrodes

Three–dimensional (3D) cross-point (X–point) memory has gathered interest for its fast data processing and high density, achieved by stacking memory with a selector device to prevent misinterpretation. Ovonic threshold switching (OTS) is a promising selector due to its reversible switching behavior....

Full description

Saved in:
Bibliographic Details
Published in:Journal of alloys and compounds 2025-01, Vol.1010, p.177102, Article 177102
Main Authors: Lee, Minkyu, Lee, Sanghyeon, Kim, Myoungsub, Lee, Jinhan, Kwon, Chaebeen, Won, Chihyeong, Lee, Seungmin, Cho, Sungjoon, Na, Seunggyu, Ji, Jongho, Lee, Hanjoo, Yoon, Kukro, Kum, Hyun S., Kim, Hyungjun, Lee, Taeyoon
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c187t-2472666c65acbc83fc7d4a327fe1ab7f6b77c57de1d7102cb4df0ba8b34871963
container_end_page
container_issue
container_start_page 177102
container_title Journal of alloys and compounds
container_volume 1010
creator Lee, Minkyu
Lee, Sanghyeon
Kim, Myoungsub
Lee, Jinhan
Kwon, Chaebeen
Won, Chihyeong
Lee, Seungmin
Cho, Sungjoon
Na, Seunggyu
Ji, Jongho
Lee, Hanjoo
Yoon, Kukro
Kum, Hyun S.
Kim, Hyungjun
Lee, Taeyoon
description Three–dimensional (3D) cross-point (X–point) memory has gathered interest for its fast data processing and high density, achieved by stacking memory with a selector device to prevent misinterpretation. Ovonic threshold switching (OTS) is a promising selector due to its reversible switching behavior. Although, OTS devices typically employ transition metal nitrides (TMN) such as TiNx, TaNx, and WNx for electrodes owing to their good stability, high melting points, and low resistivity, TMNs can diffuse and degrade device performance by recrystallizing with chalcogenide alloys. Amorphous carbon (a–C) can be a good alternative electrode material due to its low roughness, cost–effectiveness, high work function (WF), and excellent thermal stability. However, the high resistivity of a–C (∼ 150 mΩ–cm) increases threshold voltage (Vth), causing high power consumption. Therefore, combining both a–C and TMN materials can effectively obtain their advantages. This study explores the effect of varying a–C content in W2N electrodes on GeS2–based OTS selectors. The (W2N)1-xCx (0 ≤ x ≤ 0.25) electrodes were deposited using DC magnetron co–sputtering. The phase of (W2N)1-xCx (0 ≤ x ≤ 0.25) films transformed from polycrystalline to amorphous with increasing x. Devices with (W2N)1-xCx/GeS2/W2N structure showed decreased Vth and off current, improving from 4.8 to 3.8 V and 8.0–4.17 nA, respectively. The subthreshold slope, distance between traps, and interface trap density (Nit) were extracted using the Pool–Frenkel model. The reduced Vth may be attributed to a higher WF and lower Nit with increasing x. The device’s lifetime improved up to 1.0 × 109 pulses for the highest a–C content in (W2N)1-xCx (0 ≤ x ≤ 0.25) electrodes. •Easy fabrication using DC–DC co–sputtering.•Innovative electrode design using a–C and W2N.•Microstructure studies of (W2N)1-xCx electrode.•Vth and Ioff reduction to minimize power consumption.•Excellent endurance of 109 pulses.
doi_str_mv 10.1016/j.jallcom.2024.177102
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_jallcom_2024_177102</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838824036892</els_id><sourcerecordid>S0925838824036892</sourcerecordid><originalsourceid>FETCH-LOGICAL-c187t-2472666c65acbc83fc7d4a327fe1ab7f6b77c57de1d7102cb4df0ba8b34871963</originalsourceid><addsrcrecordid>eNqFkM1OwzAQhH0AiVJ4BCS_QILt_Dg9oaqCglTRQ4s4Ws56Qx0lcWS3Qbw9Ce2d02q0mtHMR8gDZzFnPH-s41o3Dbg2FkykMZeSM3FFZmwhsqhIiuKG3IZQM8b4IuEz8r2knRuwobrvvdNwoEdHsTvoDmz3RXv0lfPtqJDqzowfc_J_ynZ0jTtBt_sdNThYwEBPYfLo1vn-4E6Bgval66hxPRr6Kd4pNghH7wyGO3Jd6Sbg_eXOycfL8371Gm2267fVchMBL-QxEqkUeZ5DnmkooUgqkCbViZAVcl3KKi-lhEwa5GYaCmVqKlbqokzSQvJFnsxJds4F70LwWKne21b7H8WZmoipWl2IqYmYOhMbfU9nH47lBoteBbA4DjfWjxuUcfafhF9Cg3rZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A novel approach to enhancing performance and endurance in GeS2 OTS devices using amorphous carbon doped W2N electrodes</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Lee, Minkyu ; Lee, Sanghyeon ; Kim, Myoungsub ; Lee, Jinhan ; Kwon, Chaebeen ; Won, Chihyeong ; Lee, Seungmin ; Cho, Sungjoon ; Na, Seunggyu ; Ji, Jongho ; Lee, Hanjoo ; Yoon, Kukro ; Kum, Hyun S. ; Kim, Hyungjun ; Lee, Taeyoon</creator><creatorcontrib>Lee, Minkyu ; Lee, Sanghyeon ; Kim, Myoungsub ; Lee, Jinhan ; Kwon, Chaebeen ; Won, Chihyeong ; Lee, Seungmin ; Cho, Sungjoon ; Na, Seunggyu ; Ji, Jongho ; Lee, Hanjoo ; Yoon, Kukro ; Kum, Hyun S. ; Kim, Hyungjun ; Lee, Taeyoon</creatorcontrib><description>Three–dimensional (3D) cross-point (X–point) memory has gathered interest for its fast data processing and high density, achieved by stacking memory with a selector device to prevent misinterpretation. Ovonic threshold switching (OTS) is a promising selector due to its reversible switching behavior. Although, OTS devices typically employ transition metal nitrides (TMN) such as TiNx, TaNx, and WNx for electrodes owing to their good stability, high melting points, and low resistivity, TMNs can diffuse and degrade device performance by recrystallizing with chalcogenide alloys. Amorphous carbon (a–C) can be a good alternative electrode material due to its low roughness, cost–effectiveness, high work function (WF), and excellent thermal stability. However, the high resistivity of a–C (∼ 150 mΩ–cm) increases threshold voltage (Vth), causing high power consumption. Therefore, combining both a–C and TMN materials can effectively obtain their advantages. This study explores the effect of varying a–C content in W2N electrodes on GeS2–based OTS selectors. The (W2N)1-xCx (0 ≤ x ≤ 0.25) electrodes were deposited using DC magnetron co–sputtering. The phase of (W2N)1-xCx (0 ≤ x ≤ 0.25) films transformed from polycrystalline to amorphous with increasing x. Devices with (W2N)1-xCx/GeS2/W2N structure showed decreased Vth and off current, improving from 4.8 to 3.8 V and 8.0–4.17 nA, respectively. The subthreshold slope, distance between traps, and interface trap density (Nit) were extracted using the Pool–Frenkel model. The reduced Vth may be attributed to a higher WF and lower Nit with increasing x. The device’s lifetime improved up to 1.0 × 109 pulses for the highest a–C content in (W2N)1-xCx (0 ≤ x ≤ 0.25) electrodes. •Easy fabrication using DC–DC co–sputtering.•Innovative electrode design using a–C and W2N.•Microstructure studies of (W2N)1-xCx electrode.•Vth and Ioff reduction to minimize power consumption.•Excellent endurance of 109 pulses.</description><identifier>ISSN: 0925-8388</identifier><identifier>DOI: 10.1016/j.jallcom.2024.177102</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Amorphous carbon ; Cross–point memory ; Germanium Sulfide ; OTS selector ; Tungsten Nitride</subject><ispartof>Journal of alloys and compounds, 2025-01, Vol.1010, p.177102, Article 177102</ispartof><rights>2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c187t-2472666c65acbc83fc7d4a327fe1ab7f6b77c57de1d7102cb4df0ba8b34871963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Lee, Minkyu</creatorcontrib><creatorcontrib>Lee, Sanghyeon</creatorcontrib><creatorcontrib>Kim, Myoungsub</creatorcontrib><creatorcontrib>Lee, Jinhan</creatorcontrib><creatorcontrib>Kwon, Chaebeen</creatorcontrib><creatorcontrib>Won, Chihyeong</creatorcontrib><creatorcontrib>Lee, Seungmin</creatorcontrib><creatorcontrib>Cho, Sungjoon</creatorcontrib><creatorcontrib>Na, Seunggyu</creatorcontrib><creatorcontrib>Ji, Jongho</creatorcontrib><creatorcontrib>Lee, Hanjoo</creatorcontrib><creatorcontrib>Yoon, Kukro</creatorcontrib><creatorcontrib>Kum, Hyun S.</creatorcontrib><creatorcontrib>Kim, Hyungjun</creatorcontrib><creatorcontrib>Lee, Taeyoon</creatorcontrib><title>A novel approach to enhancing performance and endurance in GeS2 OTS devices using amorphous carbon doped W2N electrodes</title><title>Journal of alloys and compounds</title><description>Three–dimensional (3D) cross-point (X–point) memory has gathered interest for its fast data processing and high density, achieved by stacking memory with a selector device to prevent misinterpretation. Ovonic threshold switching (OTS) is a promising selector due to its reversible switching behavior. Although, OTS devices typically employ transition metal nitrides (TMN) such as TiNx, TaNx, and WNx for electrodes owing to their good stability, high melting points, and low resistivity, TMNs can diffuse and degrade device performance by recrystallizing with chalcogenide alloys. Amorphous carbon (a–C) can be a good alternative electrode material due to its low roughness, cost–effectiveness, high work function (WF), and excellent thermal stability. However, the high resistivity of a–C (∼ 150 mΩ–cm) increases threshold voltage (Vth), causing high power consumption. Therefore, combining both a–C and TMN materials can effectively obtain their advantages. This study explores the effect of varying a–C content in W2N electrodes on GeS2–based OTS selectors. The (W2N)1-xCx (0 ≤ x ≤ 0.25) electrodes were deposited using DC magnetron co–sputtering. The phase of (W2N)1-xCx (0 ≤ x ≤ 0.25) films transformed from polycrystalline to amorphous with increasing x. Devices with (W2N)1-xCx/GeS2/W2N structure showed decreased Vth and off current, improving from 4.8 to 3.8 V and 8.0–4.17 nA, respectively. The subthreshold slope, distance between traps, and interface trap density (Nit) were extracted using the Pool–Frenkel model. The reduced Vth may be attributed to a higher WF and lower Nit with increasing x. The device’s lifetime improved up to 1.0 × 109 pulses for the highest a–C content in (W2N)1-xCx (0 ≤ x ≤ 0.25) electrodes. •Easy fabrication using DC–DC co–sputtering.•Innovative electrode design using a–C and W2N.•Microstructure studies of (W2N)1-xCx electrode.•Vth and Ioff reduction to minimize power consumption.•Excellent endurance of 109 pulses.</description><subject>Amorphous carbon</subject><subject>Cross–point memory</subject><subject>Germanium Sulfide</subject><subject>OTS selector</subject><subject>Tungsten Nitride</subject><issn>0925-8388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OwzAQhH0AiVJ4BCS_QILt_Dg9oaqCglTRQ4s4Ws56Qx0lcWS3Qbw9Ce2d02q0mtHMR8gDZzFnPH-s41o3Dbg2FkykMZeSM3FFZmwhsqhIiuKG3IZQM8b4IuEz8r2knRuwobrvvdNwoEdHsTvoDmz3RXv0lfPtqJDqzowfc_J_ynZ0jTtBt_sdNThYwEBPYfLo1vn-4E6Bgval66hxPRr6Kd4pNghH7wyGO3Jd6Sbg_eXOycfL8371Gm2267fVchMBL-QxEqkUeZ5DnmkooUgqkCbViZAVcl3KKi-lhEwa5GYaCmVqKlbqokzSQvJFnsxJds4F70LwWKne21b7H8WZmoipWl2IqYmYOhMbfU9nH47lBoteBbA4DjfWjxuUcfafhF9Cg3rZ</recordid><startdate>20250105</startdate><enddate>20250105</enddate><creator>Lee, Minkyu</creator><creator>Lee, Sanghyeon</creator><creator>Kim, Myoungsub</creator><creator>Lee, Jinhan</creator><creator>Kwon, Chaebeen</creator><creator>Won, Chihyeong</creator><creator>Lee, Seungmin</creator><creator>Cho, Sungjoon</creator><creator>Na, Seunggyu</creator><creator>Ji, Jongho</creator><creator>Lee, Hanjoo</creator><creator>Yoon, Kukro</creator><creator>Kum, Hyun S.</creator><creator>Kim, Hyungjun</creator><creator>Lee, Taeyoon</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20250105</creationdate><title>A novel approach to enhancing performance and endurance in GeS2 OTS devices using amorphous carbon doped W2N electrodes</title><author>Lee, Minkyu ; Lee, Sanghyeon ; Kim, Myoungsub ; Lee, Jinhan ; Kwon, Chaebeen ; Won, Chihyeong ; Lee, Seungmin ; Cho, Sungjoon ; Na, Seunggyu ; Ji, Jongho ; Lee, Hanjoo ; Yoon, Kukro ; Kum, Hyun S. ; Kim, Hyungjun ; Lee, Taeyoon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c187t-2472666c65acbc83fc7d4a327fe1ab7f6b77c57de1d7102cb4df0ba8b34871963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Amorphous carbon</topic><topic>Cross–point memory</topic><topic>Germanium Sulfide</topic><topic>OTS selector</topic><topic>Tungsten Nitride</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Minkyu</creatorcontrib><creatorcontrib>Lee, Sanghyeon</creatorcontrib><creatorcontrib>Kim, Myoungsub</creatorcontrib><creatorcontrib>Lee, Jinhan</creatorcontrib><creatorcontrib>Kwon, Chaebeen</creatorcontrib><creatorcontrib>Won, Chihyeong</creatorcontrib><creatorcontrib>Lee, Seungmin</creatorcontrib><creatorcontrib>Cho, Sungjoon</creatorcontrib><creatorcontrib>Na, Seunggyu</creatorcontrib><creatorcontrib>Ji, Jongho</creatorcontrib><creatorcontrib>Lee, Hanjoo</creatorcontrib><creatorcontrib>Yoon, Kukro</creatorcontrib><creatorcontrib>Kum, Hyun S.</creatorcontrib><creatorcontrib>Kim, Hyungjun</creatorcontrib><creatorcontrib>Lee, Taeyoon</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Minkyu</au><au>Lee, Sanghyeon</au><au>Kim, Myoungsub</au><au>Lee, Jinhan</au><au>Kwon, Chaebeen</au><au>Won, Chihyeong</au><au>Lee, Seungmin</au><au>Cho, Sungjoon</au><au>Na, Seunggyu</au><au>Ji, Jongho</au><au>Lee, Hanjoo</au><au>Yoon, Kukro</au><au>Kum, Hyun S.</au><au>Kim, Hyungjun</au><au>Lee, Taeyoon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel approach to enhancing performance and endurance in GeS2 OTS devices using amorphous carbon doped W2N electrodes</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2025-01-05</date><risdate>2025</risdate><volume>1010</volume><spage>177102</spage><pages>177102-</pages><artnum>177102</artnum><issn>0925-8388</issn><abstract>Three–dimensional (3D) cross-point (X–point) memory has gathered interest for its fast data processing and high density, achieved by stacking memory with a selector device to prevent misinterpretation. Ovonic threshold switching (OTS) is a promising selector due to its reversible switching behavior. Although, OTS devices typically employ transition metal nitrides (TMN) such as TiNx, TaNx, and WNx for electrodes owing to their good stability, high melting points, and low resistivity, TMNs can diffuse and degrade device performance by recrystallizing with chalcogenide alloys. Amorphous carbon (a–C) can be a good alternative electrode material due to its low roughness, cost–effectiveness, high work function (WF), and excellent thermal stability. However, the high resistivity of a–C (∼ 150 mΩ–cm) increases threshold voltage (Vth), causing high power consumption. Therefore, combining both a–C and TMN materials can effectively obtain their advantages. This study explores the effect of varying a–C content in W2N electrodes on GeS2–based OTS selectors. The (W2N)1-xCx (0 ≤ x ≤ 0.25) electrodes were deposited using DC magnetron co–sputtering. The phase of (W2N)1-xCx (0 ≤ x ≤ 0.25) films transformed from polycrystalline to amorphous with increasing x. Devices with (W2N)1-xCx/GeS2/W2N structure showed decreased Vth and off current, improving from 4.8 to 3.8 V and 8.0–4.17 nA, respectively. The subthreshold slope, distance between traps, and interface trap density (Nit) were extracted using the Pool–Frenkel model. The reduced Vth may be attributed to a higher WF and lower Nit with increasing x. The device’s lifetime improved up to 1.0 × 109 pulses for the highest a–C content in (W2N)1-xCx (0 ≤ x ≤ 0.25) electrodes. •Easy fabrication using DC–DC co–sputtering.•Innovative electrode design using a–C and W2N.•Microstructure studies of (W2N)1-xCx electrode.•Vth and Ioff reduction to minimize power consumption.•Excellent endurance of 109 pulses.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2024.177102</doi></addata></record>
fulltext fulltext
identifier ISSN: 0925-8388
ispartof Journal of alloys and compounds, 2025-01, Vol.1010, p.177102, Article 177102
issn 0925-8388
language eng
recordid cdi_crossref_primary_10_1016_j_jallcom_2024_177102
source ScienceDirect Freedom Collection 2022-2024
subjects Amorphous carbon
Cross–point memory
Germanium Sulfide
OTS selector
Tungsten Nitride
title A novel approach to enhancing performance and endurance in GeS2 OTS devices using amorphous carbon doped W2N electrodes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T03%3A42%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20approach%20to%20enhancing%20performance%20and%20endurance%20in%20GeS2%20OTS%20devices%20using%20amorphous%20carbon%20doped%20W2N%20electrodes&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Lee,%20Minkyu&rft.date=2025-01-05&rft.volume=1010&rft.spage=177102&rft.pages=177102-&rft.artnum=177102&rft.issn=0925-8388&rft_id=info:doi/10.1016/j.jallcom.2024.177102&rft_dat=%3Celsevier_cross%3ES0925838824036892%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c187t-2472666c65acbc83fc7d4a327fe1ab7f6b77c57de1d7102cb4df0ba8b34871963%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true