Loading…

De-noising low-frequency magnetotelluric data using mathematical morphology filtering and sparse representation

De-noising the magnetotelluric (MT) data using the conventional time-series editing methods is at the risk of losing low-frequency signals, especially the signal below 1 Hz. To overcome this deficiency, we propose a combinatorial method based on sparse representation and mathematical morphology filt...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied geophysics 2020-01, Vol.172, p.103919, Article 103919
Main Authors: Li, Guang, Liu, Xiaoqiong, Tang, Jingtian, Li, Jin, Ren, Zhengyong, Chen, Chaojian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a332t-7728fda4715417a7e631451d013776ba591b12f4f3840342940ed8f7ca349d133
cites cdi_FETCH-LOGICAL-a332t-7728fda4715417a7e631451d013776ba591b12f4f3840342940ed8f7ca349d133
container_end_page
container_issue
container_start_page 103919
container_title Journal of applied geophysics
container_volume 172
creator Li, Guang
Liu, Xiaoqiong
Tang, Jingtian
Li, Jin
Ren, Zhengyong
Chen, Chaojian
description De-noising the magnetotelluric (MT) data using the conventional time-series editing methods is at the risk of losing low-frequency signals, especially the signal below 1 Hz. To overcome this deficiency, we propose a combinatorial method based on sparse representation and mathematical morphology filtering. First, the effective low-frequency signal is reconstructed using the mathematical morphological filtering (MMF) method and protected. Then, the residual noisy signal of high frequency is sparsely decomposed using the subspace pursuit (SP) algorithm to obtain noise-free high-frequency MT signals. Finally, the effective low-frequency signal is added to the de-noised high-frequency signal to get the full-band MT data. We evaluate the proposed method using a synthetic data set and two real data sets collected in Qiadam Basin, the northeastern part of the Tibetan Plateau. Experimental results demonstrate that the presented approach can be used to remove different kinds of cultural noises while preserve the low-frequency signal below 1 Hz. The evaluation results also indicate that the proposed method is superior to the conventional methods in terms of the signal-to-noise ratio (SNR), reconstruction error (E) and normalized cross-correlation (NCC). •Noise cancellation for MT data is important but difficult.•Effective low-frequency components are protected before de-noising.•A new strategy for noise reduction of low-frequency MT data is developed.•The use of interesting sparse representation results in the most effective noise reduction.
doi_str_mv 10.1016/j.jappgeo.2019.103919
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_jappgeo_2019_103919</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0926985119300345</els_id><sourcerecordid>S0926985119300345</sourcerecordid><originalsourceid>FETCH-LOGICAL-a332t-7728fda4715417a7e631451d013776ba591b12f4f3840342940ed8f7ca349d133</originalsourceid><addsrcrecordid>eNqFkF9LwzAUxYMoOKcfQcgX6Mxt0qZ5Epl_YeCLPoesvelSuqYmmbJvb-f27ss9cDnncPgRcgtsAQzKu27RmXFs0S9yBmr6cQXqjMygkiqDqlDnZMZUXmaqKuCSXMXYMcaAMzEj_hGzwbvohpb2_iezAb92ONR7ujXtgMkn7PtdcDVtTDJ092fcmrTB6bja9HTrw7jxvW_31Lo-YTg4zNDQOJoQkQYcA0Yc0uT3wzW5sKaPeHPSOfl8fvpYvmar95e35cMqM5znKZMyr2xjhIRCgDQSSw6igGZaLWW5NoWCNeRWWF4JxkWuBMOmsrI2XKgGOJ-T4thbBx9jQKvH4LYm7DUwfaCmO32ipg_U9JHalLs_5nAa9-0w6Fi7iQc2LmCddOPdPw2_-Qh69g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>De-noising low-frequency magnetotelluric data using mathematical morphology filtering and sparse representation</title><source>ScienceDirect Freedom Collection</source><creator>Li, Guang ; Liu, Xiaoqiong ; Tang, Jingtian ; Li, Jin ; Ren, Zhengyong ; Chen, Chaojian</creator><creatorcontrib>Li, Guang ; Liu, Xiaoqiong ; Tang, Jingtian ; Li, Jin ; Ren, Zhengyong ; Chen, Chaojian</creatorcontrib><description>De-noising the magnetotelluric (MT) data using the conventional time-series editing methods is at the risk of losing low-frequency signals, especially the signal below 1 Hz. To overcome this deficiency, we propose a combinatorial method based on sparse representation and mathematical morphology filtering. First, the effective low-frequency signal is reconstructed using the mathematical morphological filtering (MMF) method and protected. Then, the residual noisy signal of high frequency is sparsely decomposed using the subspace pursuit (SP) algorithm to obtain noise-free high-frequency MT signals. Finally, the effective low-frequency signal is added to the de-noised high-frequency signal to get the full-band MT data. We evaluate the proposed method using a synthetic data set and two real data sets collected in Qiadam Basin, the northeastern part of the Tibetan Plateau. Experimental results demonstrate that the presented approach can be used to remove different kinds of cultural noises while preserve the low-frequency signal below 1 Hz. The evaluation results also indicate that the proposed method is superior to the conventional methods in terms of the signal-to-noise ratio (SNR), reconstruction error (E) and normalized cross-correlation (NCC). •Noise cancellation for MT data is important but difficult.•Effective low-frequency components are protected before de-noising.•A new strategy for noise reduction of low-frequency MT data is developed.•The use of interesting sparse representation results in the most effective noise reduction.</description><identifier>ISSN: 0926-9851</identifier><identifier>EISSN: 1879-1859</identifier><identifier>DOI: 10.1016/j.jappgeo.2019.103919</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Low-frequency signal ; Magnetotelluric data ; Mathematical morphology filtering ; Noise attenuation ; Over-complete dictionary ; Sparse representation</subject><ispartof>Journal of applied geophysics, 2020-01, Vol.172, p.103919, Article 103919</ispartof><rights>2019 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a332t-7728fda4715417a7e631451d013776ba591b12f4f3840342940ed8f7ca349d133</citedby><cites>FETCH-LOGICAL-a332t-7728fda4715417a7e631451d013776ba591b12f4f3840342940ed8f7ca349d133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Li, Guang</creatorcontrib><creatorcontrib>Liu, Xiaoqiong</creatorcontrib><creatorcontrib>Tang, Jingtian</creatorcontrib><creatorcontrib>Li, Jin</creatorcontrib><creatorcontrib>Ren, Zhengyong</creatorcontrib><creatorcontrib>Chen, Chaojian</creatorcontrib><title>De-noising low-frequency magnetotelluric data using mathematical morphology filtering and sparse representation</title><title>Journal of applied geophysics</title><description>De-noising the magnetotelluric (MT) data using the conventional time-series editing methods is at the risk of losing low-frequency signals, especially the signal below 1 Hz. To overcome this deficiency, we propose a combinatorial method based on sparse representation and mathematical morphology filtering. First, the effective low-frequency signal is reconstructed using the mathematical morphological filtering (MMF) method and protected. Then, the residual noisy signal of high frequency is sparsely decomposed using the subspace pursuit (SP) algorithm to obtain noise-free high-frequency MT signals. Finally, the effective low-frequency signal is added to the de-noised high-frequency signal to get the full-band MT data. We evaluate the proposed method using a synthetic data set and two real data sets collected in Qiadam Basin, the northeastern part of the Tibetan Plateau. Experimental results demonstrate that the presented approach can be used to remove different kinds of cultural noises while preserve the low-frequency signal below 1 Hz. The evaluation results also indicate that the proposed method is superior to the conventional methods in terms of the signal-to-noise ratio (SNR), reconstruction error (E) and normalized cross-correlation (NCC). •Noise cancellation for MT data is important but difficult.•Effective low-frequency components are protected before de-noising.•A new strategy for noise reduction of low-frequency MT data is developed.•The use of interesting sparse representation results in the most effective noise reduction.</description><subject>Low-frequency signal</subject><subject>Magnetotelluric data</subject><subject>Mathematical morphology filtering</subject><subject>Noise attenuation</subject><subject>Over-complete dictionary</subject><subject>Sparse representation</subject><issn>0926-9851</issn><issn>1879-1859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkF9LwzAUxYMoOKcfQcgX6Mxt0qZ5Epl_YeCLPoesvelSuqYmmbJvb-f27ss9cDnncPgRcgtsAQzKu27RmXFs0S9yBmr6cQXqjMygkiqDqlDnZMZUXmaqKuCSXMXYMcaAMzEj_hGzwbvohpb2_iezAb92ONR7ujXtgMkn7PtdcDVtTDJ092fcmrTB6bja9HTrw7jxvW_31Lo-YTg4zNDQOJoQkQYcA0Yc0uT3wzW5sKaPeHPSOfl8fvpYvmar95e35cMqM5znKZMyr2xjhIRCgDQSSw6igGZaLWW5NoWCNeRWWF4JxkWuBMOmsrI2XKgGOJ-T4thbBx9jQKvH4LYm7DUwfaCmO32ipg_U9JHalLs_5nAa9-0w6Fi7iQc2LmCddOPdPw2_-Qh69g</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Li, Guang</creator><creator>Liu, Xiaoqiong</creator><creator>Tang, Jingtian</creator><creator>Li, Jin</creator><creator>Ren, Zhengyong</creator><creator>Chen, Chaojian</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202001</creationdate><title>De-noising low-frequency magnetotelluric data using mathematical morphology filtering and sparse representation</title><author>Li, Guang ; Liu, Xiaoqiong ; Tang, Jingtian ; Li, Jin ; Ren, Zhengyong ; Chen, Chaojian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a332t-7728fda4715417a7e631451d013776ba591b12f4f3840342940ed8f7ca349d133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Low-frequency signal</topic><topic>Magnetotelluric data</topic><topic>Mathematical morphology filtering</topic><topic>Noise attenuation</topic><topic>Over-complete dictionary</topic><topic>Sparse representation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Guang</creatorcontrib><creatorcontrib>Liu, Xiaoqiong</creatorcontrib><creatorcontrib>Tang, Jingtian</creatorcontrib><creatorcontrib>Li, Jin</creatorcontrib><creatorcontrib>Ren, Zhengyong</creatorcontrib><creatorcontrib>Chen, Chaojian</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied geophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Guang</au><au>Liu, Xiaoqiong</au><au>Tang, Jingtian</au><au>Li, Jin</au><au>Ren, Zhengyong</au><au>Chen, Chaojian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>De-noising low-frequency magnetotelluric data using mathematical morphology filtering and sparse representation</atitle><jtitle>Journal of applied geophysics</jtitle><date>2020-01</date><risdate>2020</risdate><volume>172</volume><spage>103919</spage><pages>103919-</pages><artnum>103919</artnum><issn>0926-9851</issn><eissn>1879-1859</eissn><abstract>De-noising the magnetotelluric (MT) data using the conventional time-series editing methods is at the risk of losing low-frequency signals, especially the signal below 1 Hz. To overcome this deficiency, we propose a combinatorial method based on sparse representation and mathematical morphology filtering. First, the effective low-frequency signal is reconstructed using the mathematical morphological filtering (MMF) method and protected. Then, the residual noisy signal of high frequency is sparsely decomposed using the subspace pursuit (SP) algorithm to obtain noise-free high-frequency MT signals. Finally, the effective low-frequency signal is added to the de-noised high-frequency signal to get the full-band MT data. We evaluate the proposed method using a synthetic data set and two real data sets collected in Qiadam Basin, the northeastern part of the Tibetan Plateau. Experimental results demonstrate that the presented approach can be used to remove different kinds of cultural noises while preserve the low-frequency signal below 1 Hz. The evaluation results also indicate that the proposed method is superior to the conventional methods in terms of the signal-to-noise ratio (SNR), reconstruction error (E) and normalized cross-correlation (NCC). •Noise cancellation for MT data is important but difficult.•Effective low-frequency components are protected before de-noising.•A new strategy for noise reduction of low-frequency MT data is developed.•The use of interesting sparse representation results in the most effective noise reduction.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.jappgeo.2019.103919</doi></addata></record>
fulltext fulltext
identifier ISSN: 0926-9851
ispartof Journal of applied geophysics, 2020-01, Vol.172, p.103919, Article 103919
issn 0926-9851
1879-1859
language eng
recordid cdi_crossref_primary_10_1016_j_jappgeo_2019_103919
source ScienceDirect Freedom Collection
subjects Low-frequency signal
Magnetotelluric data
Mathematical morphology filtering
Noise attenuation
Over-complete dictionary
Sparse representation
title De-noising low-frequency magnetotelluric data using mathematical morphology filtering and sparse representation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A59%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=De-noising%20low-frequency%20magnetotelluric%20data%20using%20mathematical%20morphology%20filtering%20and%20sparse%20representation&rft.jtitle=Journal%20of%20applied%20geophysics&rft.au=Li,%20Guang&rft.date=2020-01&rft.volume=172&rft.spage=103919&rft.pages=103919-&rft.artnum=103919&rft.issn=0926-9851&rft.eissn=1879-1859&rft_id=info:doi/10.1016/j.jappgeo.2019.103919&rft_dat=%3Celsevier_cross%3ES0926985119300345%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a332t-7728fda4715417a7e631451d013776ba591b12f4f3840342940ed8f7ca349d133%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true