Loading…
Towards a three-dimensional cost-effective registration of the archaeological heritage
Archaeological practice within the European context of heritage management is facing huge challenges in ways of recording and reproduction of ex-situ preserved sites. As a consequence of the Valletta-treaty, numbers of archived images and drawings of excavated structures as prime sources of past hum...
Saved in:
Published in: | Journal of archaeological science 2013-02, Vol.40 (2), p.1108-1121 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Archaeological practice within the European context of heritage management is facing huge challenges in ways of recording and reproduction of ex-situ preserved sites. As a consequence of the Valletta-treaty, numbers of archived images and drawings of excavated structures as prime sources of past human activity, are exponentially growing. Contrarily to portable remains however, their future study and revision is biased by the two-dimensional character of the recorded data, rendering difficult their future reconstruction for new study or public dissemination. A more realistic three-dimensional (3D) way of recording and archiving should be pursued. In this paper the possibilities for 3D registration of archaeological features are examined in a computer vision-based approach using the PhotoScan software package (Agisoft LCC). It proved to be a scientific and cost-effective improvement compared to traditional documentation methods. Advantages can be found in the high accuracy and straightforwardness of the methodology. The extraction of an orthophoto or a Digital Terrain Model from the 3D model makes it feasible to integrate detailed and accurate information into the digital archaeological excavation plan. The visual character of 3D surface modeling offers enhanced output-possibilities allowing a better documentation of in-situ structures for future research and a higher public participation and awareness for the archaeological heritage.
► Traditional excavation recordings are biased by their two-dimensional character. ► A realistic three-dimensional way of recording and archiving need to be pursued. ► Computer vision techniques provide a cost-effective solution. ► Highly detailed and accurate 3D models of excavation data can be generated. |
---|---|
ISSN: | 0305-4403 1095-9238 |
DOI: | 10.1016/j.jas.2012.08.040 |