Loading…
Reconstruction of functions from prescribed proximal points
Under investigation is the problem of finding the best approximation of a function in a Hilbert space subject to convex constraints and prescribed nonlinear transformations. We show that in many instances these prescriptions can be represented using firmly nonexpansive operators, even when the origi...
Saved in:
Published in: | Journal of approximation theory 2021-08, Vol.268, p.105606, Article 105606 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c340t-d39333f5179b1e05bd6cc2a6b3794a98900ef9900c58c011048f9b70dab541633 |
---|---|
cites | cdi_FETCH-LOGICAL-c340t-d39333f5179b1e05bd6cc2a6b3794a98900ef9900c58c011048f9b70dab541633 |
container_end_page | |
container_issue | |
container_start_page | 105606 |
container_title | Journal of approximation theory |
container_volume | 268 |
creator | Combettes, Patrick L. Woodstock, Zev C. |
description | Under investigation is the problem of finding the best approximation of a function in a Hilbert space subject to convex constraints and prescribed nonlinear transformations. We show that in many instances these prescriptions can be represented using firmly nonexpansive operators, even when the original observation process is discontinuous. The proposed framework thus captures a large body of classical and contemporary best approximation problems arising in areas such as harmonic analysis, statistics, interpolation theory, and signal processing. The resulting problem is recast in terms of a common fixed point problem and solved with a new block-iterative algorithm that features approximate projections onto the individual sets as well as an extrapolated relaxation scheme that exploits the possible presence of affine constraints. A numerical application to signal recovery is demonstrated. |
doi_str_mv | 10.1016/j.jat.2021.105606 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_jat_2021_105606</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021904521000691</els_id><sourcerecordid>S0021904521000691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-d39333f5179b1e05bd6cc2a6b3794a98900ef9900c58c011048f9b70dab541633</originalsourceid><addsrcrecordid>eNp9j91KxDAQhYMoWFcfwLu-QOtM06QNeyWLf7AgiF6H5g9SdpuSdEXf3qzrtTcz5zCc4XyE3CLUCMjvxnoclrqBBrNnHPgZKRAEr6ClcE4KyJdKQMsuyVVKIwAiY1iQ9ZvVYUpLPOjFh6kMrnSH6Ven0sWwL-dok45eWZNl-PL7YVfOwU9LuiYXbtgle_O3V-Tj8eF981xtX59eNvfbStMWlspQQSl1DDuh0AJThmvdDFzRTrSD6AWAdSJPzXqde0HbO6E6MINiLXJKVwRPf3UMKUXr5BxzjfgtEeSRXo4y08sjvTzR58z6lLG52Ke3USbt7aSt8dHqRZrg_0n_ACBLYhY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Reconstruction of functions from prescribed proximal points</title><source>ScienceDirect Freedom Collection</source><creator>Combettes, Patrick L. ; Woodstock, Zev C.</creator><creatorcontrib>Combettes, Patrick L. ; Woodstock, Zev C.</creatorcontrib><description>Under investigation is the problem of finding the best approximation of a function in a Hilbert space subject to convex constraints and prescribed nonlinear transformations. We show that in many instances these prescriptions can be represented using firmly nonexpansive operators, even when the original observation process is discontinuous. The proposed framework thus captures a large body of classical and contemporary best approximation problems arising in areas such as harmonic analysis, statistics, interpolation theory, and signal processing. The resulting problem is recast in terms of a common fixed point problem and solved with a new block-iterative algorithm that features approximate projections onto the individual sets as well as an extrapolated relaxation scheme that exploits the possible presence of affine constraints. A numerical application to signal recovery is demonstrated.</description><identifier>ISSN: 0021-9045</identifier><identifier>EISSN: 1096-0430</identifier><identifier>DOI: 10.1016/j.jat.2021.105606</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Best approximation algorithm ; Constrained interpolation ; Firmly nonexpansive operator ; Nonlinear signal recovery ; Proximal point</subject><ispartof>Journal of approximation theory, 2021-08, Vol.268, p.105606, Article 105606</ispartof><rights>2021 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-d39333f5179b1e05bd6cc2a6b3794a98900ef9900c58c011048f9b70dab541633</citedby><cites>FETCH-LOGICAL-c340t-d39333f5179b1e05bd6cc2a6b3794a98900ef9900c58c011048f9b70dab541633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Combettes, Patrick L.</creatorcontrib><creatorcontrib>Woodstock, Zev C.</creatorcontrib><title>Reconstruction of functions from prescribed proximal points</title><title>Journal of approximation theory</title><description>Under investigation is the problem of finding the best approximation of a function in a Hilbert space subject to convex constraints and prescribed nonlinear transformations. We show that in many instances these prescriptions can be represented using firmly nonexpansive operators, even when the original observation process is discontinuous. The proposed framework thus captures a large body of classical and contemporary best approximation problems arising in areas such as harmonic analysis, statistics, interpolation theory, and signal processing. The resulting problem is recast in terms of a common fixed point problem and solved with a new block-iterative algorithm that features approximate projections onto the individual sets as well as an extrapolated relaxation scheme that exploits the possible presence of affine constraints. A numerical application to signal recovery is demonstrated.</description><subject>Best approximation algorithm</subject><subject>Constrained interpolation</subject><subject>Firmly nonexpansive operator</subject><subject>Nonlinear signal recovery</subject><subject>Proximal point</subject><issn>0021-9045</issn><issn>1096-0430</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9j91KxDAQhYMoWFcfwLu-QOtM06QNeyWLf7AgiF6H5g9SdpuSdEXf3qzrtTcz5zCc4XyE3CLUCMjvxnoclrqBBrNnHPgZKRAEr6ClcE4KyJdKQMsuyVVKIwAiY1iQ9ZvVYUpLPOjFh6kMrnSH6Ven0sWwL-dok45eWZNl-PL7YVfOwU9LuiYXbtgle_O3V-Tj8eF981xtX59eNvfbStMWlspQQSl1DDuh0AJThmvdDFzRTrSD6AWAdSJPzXqde0HbO6E6MINiLXJKVwRPf3UMKUXr5BxzjfgtEeSRXo4y08sjvTzR58z6lLG52Ke3USbt7aSt8dHqRZrg_0n_ACBLYhY</recordid><startdate>202108</startdate><enddate>202108</enddate><creator>Combettes, Patrick L.</creator><creator>Woodstock, Zev C.</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202108</creationdate><title>Reconstruction of functions from prescribed proximal points</title><author>Combettes, Patrick L. ; Woodstock, Zev C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-d39333f5179b1e05bd6cc2a6b3794a98900ef9900c58c011048f9b70dab541633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Best approximation algorithm</topic><topic>Constrained interpolation</topic><topic>Firmly nonexpansive operator</topic><topic>Nonlinear signal recovery</topic><topic>Proximal point</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Combettes, Patrick L.</creatorcontrib><creatorcontrib>Woodstock, Zev C.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of approximation theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Combettes, Patrick L.</au><au>Woodstock, Zev C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reconstruction of functions from prescribed proximal points</atitle><jtitle>Journal of approximation theory</jtitle><date>2021-08</date><risdate>2021</risdate><volume>268</volume><spage>105606</spage><pages>105606-</pages><artnum>105606</artnum><issn>0021-9045</issn><eissn>1096-0430</eissn><abstract>Under investigation is the problem of finding the best approximation of a function in a Hilbert space subject to convex constraints and prescribed nonlinear transformations. We show that in many instances these prescriptions can be represented using firmly nonexpansive operators, even when the original observation process is discontinuous. The proposed framework thus captures a large body of classical and contemporary best approximation problems arising in areas such as harmonic analysis, statistics, interpolation theory, and signal processing. The resulting problem is recast in terms of a common fixed point problem and solved with a new block-iterative algorithm that features approximate projections onto the individual sets as well as an extrapolated relaxation scheme that exploits the possible presence of affine constraints. A numerical application to signal recovery is demonstrated.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jat.2021.105606</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9045 |
ispartof | Journal of approximation theory, 2021-08, Vol.268, p.105606, Article 105606 |
issn | 0021-9045 1096-0430 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_jat_2021_105606 |
source | ScienceDirect Freedom Collection |
subjects | Best approximation algorithm Constrained interpolation Firmly nonexpansive operator Nonlinear signal recovery Proximal point |
title | Reconstruction of functions from prescribed proximal points |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T21%3A23%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reconstruction%20of%20functions%20from%20prescribed%20proximal%20points&rft.jtitle=Journal%20of%20approximation%20theory&rft.au=Combettes,%20Patrick%20L.&rft.date=2021-08&rft.volume=268&rft.spage=105606&rft.pages=105606-&rft.artnum=105606&rft.issn=0021-9045&rft.eissn=1096-0430&rft_id=info:doi/10.1016/j.jat.2021.105606&rft_dat=%3Celsevier_cross%3ES0021904521000691%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c340t-d39333f5179b1e05bd6cc2a6b3794a98900ef9900c58c011048f9b70dab541633%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |