Loading…

Predicting the outcome of transcatheter mitral valve implantation using image-based computational models

The appropriate placement and size selection of mitral prostheses in transcatheter mitral valve implantation (TMVI) is critical, as encroachment on the left ventricular outflow tract (LVOT) may lead to flow obstruction. Recent advances in computed tomography (CT) can be employed for pre-procedural p...

Full description

Saved in:
Bibliographic Details
Published in:Journal of cardiovascular computed tomography 2020-07, Vol.14 (4), p.335-342
Main Authors: Alharbi, Yousef, Otton, James, Muller, David W.M., Geelan-Small, Peter, Lovell, Nigel H., Al Abed, Amr, Dokos, Socrates
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The appropriate placement and size selection of mitral prostheses in transcatheter mitral valve implantation (TMVI) is critical, as encroachment on the left ventricular outflow tract (LVOT) may lead to flow obstruction. Recent advances in computed tomography (CT) can be employed for pre-procedural planning of mitral prosthetic valve placement. This study aims to develop patient-specific computational fluid dynamics models of the left ventricle (LV) in the presence of a mitral valve prosthesis to investigate blood flow and LVOT pressure gradient during systole. Patient-specific computational fluid dynamics simulations of TMVI with varied cardiac anatomy and insertion angles were performed (n = 30). Wide-volume full cycle cardiovascular CT images prior to TMVI were used as source anatomical data (n = 6 patients). Blood movement was governed by Navier-Stokes equations and the LV endocardial wall deformation was derived from each patient's CT images. The computed pressure gradients in the presence of the mitral prosthesis compared well with clinically measured gradients. Analysis of the effects of prosthetic valve angulation, aorto-mitral annular angle, ejection fraction, LV size and new LVOT area (neo-LVOT) after TMVI in silico revealed that the neo-LVOT area (p 
ISSN:1934-5925
1876-861X
DOI:10.1016/j.jcct.2019.11.016