Loading…

Optimization and nonlinear control of a batch crystallization process

Crystallization process has been widely used for separation in many chemical industries due to its capability to provide high purity product. To obtain the desired quality of crystal product, an optimal cooling control strategy is studied in the present work. Within the proposed control strategy, a...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the Chinese Institute of Chemical Engineers 2008-05, Vol.39 (3), p.249-256
Main Authors: Paengjuntuek, Woranee, Kittisupakorn, Paisan, Arpornwichanop, Amornchai
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Crystallization process has been widely used for separation in many chemical industries due to its capability to provide high purity product. To obtain the desired quality of crystal product, an optimal cooling control strategy is studied in the present work. Within the proposed control strategy, a dynamic optimization is first preformed with the objective to obtain the optimal cooling temperature policy of a batch crystallizer, maximizing the total volume of seeded crystals. Two different optimization problems are formulated and solved by using a sequential optimization approach. Owing to the complex and nonlinear behavior of the batch crystallizer, the nonlinear control strategy which is based on a generic model control (GMC) algorithm is implemented to track the resulting optimal temperature profile. The optimization integrated with nonlinear control strategy is demonstrated on a seeded batch crystallizer for the production of potassium sulfate.
ISSN:0368-1653
DOI:10.1016/j.jcice.2007.12.017