Loading…

Self-assembly and template-free synthesis of ZnO hierarchical nanostructures and their photocatalytic properties

[Display omitted] Despite significant progress in the field of semiconductor photocatalysis has been made, it is still a great challenge to prepare low-cost photocatalysts with high activities. In our work, three dimensional (3D) flower-like ZnO hierarchical nanostructures assembled with numerous na...

Full description

Saved in:
Bibliographic Details
Published in:Journal of colloid and interface science 2015-06, Vol.448, p.367-373
Main Authors: Zhou, Hongshun, Zhang, Haijiao, Wang, Yong, Miao, Yu, Gu, Lanbing, Jiao, Zheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:[Display omitted] Despite significant progress in the field of semiconductor photocatalysis has been made, it is still a great challenge to prepare low-cost photocatalysts with high activities. In our work, three dimensional (3D) flower-like ZnO hierarchical nanostructures assembled with numerous nanosheets were fabricated by a simple, template-free and one-step hydrothermal route. The products were characterized by XRD, UV–Vis, PL, SEM, TEM, HRTEM techniques. In the process, NH4F played a crucial role for the formation of ZnO hierarchical nanostructures, which was acted both as the alkali source and morphology director. Furthermore, the growth of ZnO involved a phase transformation from intermediate compound ZnF(OH) to ZnO. To further improve the photocatalytic activity, Ag-doped ZnO photocatalyst was also prepared. The photocatalytic results indicated that the Ag/ZnO exhibited higher photocatalytic activity than the pure ZnO. The great enhancement was mainly ascribed to their unique hierarchical nanostructures as well as the modification of Ag nanoparticles. Additionally, both ZnO and Ag/ZnO microspheres showed good recycling stabilities over several separation cycles in photodegradation.
ISSN:0021-9797
1095-7103
DOI:10.1016/j.jcis.2015.02.040