Loading…

Preparation of core/shell nanostructure Fe3O4@PEG400-SO3H as heterogeneous and magnetically recyclable nanocatalyst for one-pot synthesis of substituted pyrroles by Paal-Knorr reaction at room temperature

[Display omitted] An efficient procedure has been proposed for the loading of sulfonic acid groups on the surface of polyethylene glycol 400 (PEG400)-encapsulated Fe3O4 nanoparticles to synthesize a core–shell Fe3O4@PEG400-SO3H nano catalyst. Surface functionalization of magnetic particles in such a...

Full description

Saved in:
Bibliographic Details
Published in:Journal of colloid and interface science 2017-06, Vol.496, p.177-187
Main Authors: Bonyasi, Fahimeh, Hekmati, Malak, Veisi, Hojat
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:[Display omitted] An efficient procedure has been proposed for the loading of sulfonic acid groups on the surface of polyethylene glycol 400 (PEG400)-encapsulated Fe3O4 nanoparticles to synthesize a core–shell Fe3O4@PEG400-SO3H nano catalyst. Surface functionalization of magnetic particles in such a way is a refined method of bridging the gap amongst heterogeneous and homogeneous catalysis. The procured nano catalyst was classified through Fourier transformed infrared spectroscopy (FT-IR), X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), wavelength-dispersive X-ray spectroscopy (WDX), thermogravimetric analysis (TGA), vibrating sample magnetometer (VSM), X-ray photoelectron spectroscopy (XPS), BET, and back titration. The nanoparticles have been utilized as a convenient catalyst for synthesizing a variety of N-substituted pyrroles via Paal-Knorr reactions of γ-diketones with amines, diamines or triamines at room temperature under solvent-free conditions. Notably, the newly produced catalyst was recoverable and recyclable (9 times) without any noticeable decrease in its activity.
ISSN:0021-9797
1095-7103
DOI:10.1016/j.jcis.2017.02.023