Loading…

Microfluidics-assisted conjugation of chitosan-coated polymeric nanoparticles with antibodies: Significance in drug release, uptake, and cytotoxicity in breast cancer cells

[Display omitted] Nanoparticle-based drug delivery systems, in combination with high-affinity disease-specific targeting ligands, provide a sophisticated landscape in cancer theranostics. Due to their high diversity and specificity to target cells, antibodies are extensively used to provide bioactiv...

Full description

Saved in:
Bibliographic Details
Published in:Journal of colloid and interface science 2021-06, Vol.591, p.440-450
Main Authors: Escareño, Noé, Hassan, Natalia, Kogan, Marcelo J., Juárez, Josué, Topete, Antonio, Daneri-Navarro, Adrián
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:[Display omitted] Nanoparticle-based drug delivery systems, in combination with high-affinity disease-specific targeting ligands, provide a sophisticated landscape in cancer theranostics. Due to their high diversity and specificity to target cells, antibodies are extensively used to provide bioactivity to a plethora of nanoparticulate systems. However, controlled and reproducible assembly of nanoparticles (NPs) with these targeting ligands remains a challenge. In this context, determinants such as ligand density and orientation, play a significant role in antibody bioactivity; nevertheless, these factors are complicated to control in traditional bulk labeling methods. Here, we propose a microfluidic-assisted methodology using a polydimethylsiloxane (PDMS) Y-shaped microreactor for the covalent conjugation of Trastuzumab (TZB), a recombinant antibody targeting HER2 (human epidermal growth factor receptor 2), to doxorubicin-loaded PLGA/Chitosan NPs (PLGA/DOX/Ch NPs) using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and N-hydroxysulfosuccinimide (sNHS) mediated bioconjugation reactions. Our labeling approach led to smaller and less disperse nanoparticle-antibody conjugates providing differential performance when compared to bulk-labeled NPs in terms of drug release kinetics (fitted and analyzed with DDSolver), cell uptake/labeling, and cytotoxic activity on HER2 + breast cancer cells in vitro. By controlling NP-antibody interactions in a laminar regime, we managed to optimize NP labeling with antibodies resulting in ordered coronas with optimal orientation and density for bioactivity, providing a cheap and reproducible, one-step method for labeling NPs with globular targeting moieties.
ISSN:0021-9797
1095-7103
DOI:10.1016/j.jcis.2021.02.031