Loading…
Energy consumption and carbon emissions management in drinking water treatment plants: A systematic review
The interconnectedness between water, energy, and carbon emissions has emerged as a significant topic in mitigating water scarcity, energy usage, and carbon emissions. The search for alternative water sources and low-energy alternative methods has been necessitated especially for drinking water trea...
Saved in:
Published in: | Journal of cleaner production 2024-01, Vol.437, p.140688, Article 140688 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The interconnectedness between water, energy, and carbon emissions has emerged as a significant topic in mitigating water scarcity, energy usage, and carbon emissions. The search for alternative water sources and low-energy alternative methods has been necessitated especially for drinking water treatment plants (DWTPs) operations. The study investigates the inherent relationships between water, energy, and carbon emissions in DWTP operations using the systematic review method. A total of 93 bibliographic records were analyzed. Data shows that research trends have increased in recent years, peaking in 2011 and 2021, with the US, Spain, and Saudi Arabia making significant advances in the research domain. It was noted that the optimal energy consumption and carbon emissions during water treatment depend on water volume, water characteristics, fuel type, and treatment requirements. Reverse osmosis and desalination are characterized as the most energy-intensive processes that emit large amounts of carbon compared to conventional methods. Pumping systems were identified as the most energy-intensive unit of DWTPs, and optimization could save up to 20% of future energy use. Despite the growing volume of literature, the study found that there is a lack of standardized principles for regulating energy usage and carbon emissions. Thus, research focusing on sustainable management practices, renewable energy sources, improving energy efficiency, and equipment optimization is essential. The research further identified gaps, potential research areas, and highlighted the need for further investigation in specific areas. The study aims to fill in the gaps in existing knowledge and provide direction for future research.
[Display omitted]
•Climate change impacts water availability, quality, and treatment requirements.•Conventional treatment methods are low-energy processes compared to advanced methods.•Desalination and reverse osmosis are energy-intensive water treatment processes.•Future DWTP pumping system optimization could save 20% of energy use.•Carbon accounting regulations and policies are lacking in most developing countries. |
---|---|
ISSN: | 0959-6526 1879-1786 |
DOI: | 10.1016/j.jclepro.2024.140688 |