Loading…

Graphene oxide nanoarchitectures in cancer biology: Nano-modulators of autophagy and apoptosis

Nanotechnology is a growing field, with many potential biomedical applications of nanomedicine for the treatment of different diseases, particularly cancer, on the horizon. Graphene oxide (GO) nanoparticles can act as carbon-based nanocarriers with advantages such as a large surface area, good mecha...

Full description

Saved in:
Bibliographic Details
Published in:Journal of controlled release 2023-02, Vol.354, p.503-522
Main Authors: Taheriazam, Afshin, Abad, Ghazaleh Gholamiyan Yousef, Hajimazdarany, Shima, Imani, Mohammad Hassan, Ziaolhagh, Setayesh, Zandieh, Mohammad Arad, Bayanzadeh, Seyedeh Delaram, Mirzaei, Sepideh, Hamblin, Michael R., Entezari, Maliheh, Aref, Amir Reza, Zarrabi, Ali, Ertas, Yavuz Nuri, Ren, Jun, Rajabi, Romina, Paskeh, Mahshid Deldar Abad, Hashemi, Mehrdad, Hushmandi, Kiavash
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Nanotechnology is a growing field, with many potential biomedical applications of nanomedicine for the treatment of different diseases, particularly cancer, on the horizon. Graphene oxide (GO) nanoparticles can act as carbon-based nanocarriers with advantages such as a large surface area, good mechanical strength, and the capacity for surface modification. These nanostructures have been extensively used in cancer therapy for drug and gene delivery, photothermal therapy, overcoming chemotherapy resistance, and for imaging procedures. In the current review, we focus on the biological functions of GO nanoparticles as regulators of apoptosis and autophagy, the two major forms of programmed cell death. GO nanoparticles can either induce or inhibit autophagy in cancer cells, depending on the conditions. By stimulating autophagy, GO nanocarriers can promote the sensitivity of cancer cells to chemotherapy. However, by impairing autophagy flux, GO nanoparticles can reduce cell survival and enhance inflammation. Similarly, GO nanomaterials can increase ROS production and induce DNA damage, thereby sensitizing cancer cells to apoptosis. In vitro and in vivo experiments have investigated whether GO nanomaterials show any toxicity in major body organs, such as the brain, liver, spleen, and heart. Molecular pathways, such as ATG, MAPK, JNK, and Akt, can be regulated by GO nanomaterials, leading to effects on autophagy and apoptosis. These topics are discussed in this review to shed some lights towards the biomedical potential of GO nanoparticles and their biocompatibility, paving the way for their future application in clinical trials. [Display omitted]
ISSN:0168-3659
1873-4995
DOI:10.1016/j.jconrel.2023.01.028