Loading…

Stability evaluation of approximate Riemann solvers using the direct Lyapunov method

The paper presents a new approach of stability evaluation of the approximate Riemann solvers based on the direct Lyapunov method. The present methodology offers a detailed understanding of the origins of numerical shock instability in approximate Riemann solvers. The pressure perturbation feeding th...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational physics 2025-02, Vol.522, p.113599, Article 113599
Main Authors: Gogoi, A., Mandal, J.C., Saraf, A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c179t-522fd1f970660ed2cd20012907be336fb02cb15bf0143328715f402df11371013
container_end_page
container_issue
container_start_page 113599
container_title Journal of computational physics
container_volume 522
creator Gogoi, A.
Mandal, J.C.
Saraf, A.
description The paper presents a new approach of stability evaluation of the approximate Riemann solvers based on the direct Lyapunov method. The present methodology offers a detailed understanding of the origins of numerical shock instability in approximate Riemann solvers. The pressure perturbation feeding the density and transverse momentum perturbations is identified as the cause of the numerical shock instabilities in the complete approximate Riemann solvers, while the magnitude of the numerical shock instabilities is found to be proportional to the magnitude of the pressure perturbations. A shock-stable HLLEM scheme is proposed based on the insights obtained from this analysis about the origins of numerical shock instability in the approximate Riemann solvers. A set of numerical test cases are solved to show that the proposed scheme is free from numerical shock instability problems of the original HLLEM scheme at high Mach numbers. •Stability evaluation of Riemann solvers based on the direct Lyapunov method.•Identification of the cause of shock instability in the complete Riemann solvers.•Shock stable HLLEM scheme based on insights into shock instability.•Shock stability demonstration numerically and through phase portrait.
doi_str_mv 10.1016/j.jcp.2024.113599
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_jcp_2024_113599</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999124008477</els_id><sourcerecordid>S0021999124008477</sourcerecordid><originalsourceid>FETCH-LOGICAL-c179t-522fd1f970660ed2cd20012907be336fb02cb15bf0143328715f402df11371013</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRb0AiVL4AHb-gYQZ51WLFap4SZWQoKwtx7GpozSObDcif0-qsGY1qzO65xByh5AiYHnfpq0aUgYsTxGzgvMLsgJgmHDO8Ypch9ACwKbINyuy_4yytp2NE9Wj7E4yWtdTZ6gcBu9-7FFGTT-sPsq-p8F1o_aBnoLtv2k8aNpYr1Wku0kOp96N9KjjwTU35NLILujbv7smX89P--1rsnt_eds-7hKFFY9JwZhp0PAKyhJ0w1TDAJBxqGqdZaWpgakai9oA5lnGNhUWJgfWmNmqmk2zNcHlr_IuBK-NGPy82E8CQZxTiFbMKcQ5hVhSzMzDwuh52Gi1F0FZ3Su9qIjG2X_oXyAnaSg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Stability evaluation of approximate Riemann solvers using the direct Lyapunov method</title><source>Elsevier</source><creator>Gogoi, A. ; Mandal, J.C. ; Saraf, A.</creator><creatorcontrib>Gogoi, A. ; Mandal, J.C. ; Saraf, A.</creatorcontrib><description>The paper presents a new approach of stability evaluation of the approximate Riemann solvers based on the direct Lyapunov method. The present methodology offers a detailed understanding of the origins of numerical shock instability in approximate Riemann solvers. The pressure perturbation feeding the density and transverse momentum perturbations is identified as the cause of the numerical shock instabilities in the complete approximate Riemann solvers, while the magnitude of the numerical shock instabilities is found to be proportional to the magnitude of the pressure perturbations. A shock-stable HLLEM scheme is proposed based on the insights obtained from this analysis about the origins of numerical shock instability in the approximate Riemann solvers. A set of numerical test cases are solved to show that the proposed scheme is free from numerical shock instability problems of the original HLLEM scheme at high Mach numbers. •Stability evaluation of Riemann solvers based on the direct Lyapunov method.•Identification of the cause of shock instability in the complete Riemann solvers.•Shock stable HLLEM scheme based on insights into shock instability.•Shock stability demonstration numerically and through phase portrait.</description><identifier>ISSN: 0021-9991</identifier><identifier>DOI: 10.1016/j.jcp.2024.113599</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Contact and shear waves ; HLL family schemes ; Lyapunov method ; Numerical shock instability ; Pressure perturbation ; Riemann solver</subject><ispartof>Journal of computational physics, 2025-02, Vol.522, p.113599, Article 113599</ispartof><rights>2024 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c179t-522fd1f970660ed2cd20012907be336fb02cb15bf0143328715f402df11371013</cites><orcidid>0000-0002-7615-6947</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Gogoi, A.</creatorcontrib><creatorcontrib>Mandal, J.C.</creatorcontrib><creatorcontrib>Saraf, A.</creatorcontrib><title>Stability evaluation of approximate Riemann solvers using the direct Lyapunov method</title><title>Journal of computational physics</title><description>The paper presents a new approach of stability evaluation of the approximate Riemann solvers based on the direct Lyapunov method. The present methodology offers a detailed understanding of the origins of numerical shock instability in approximate Riemann solvers. The pressure perturbation feeding the density and transverse momentum perturbations is identified as the cause of the numerical shock instabilities in the complete approximate Riemann solvers, while the magnitude of the numerical shock instabilities is found to be proportional to the magnitude of the pressure perturbations. A shock-stable HLLEM scheme is proposed based on the insights obtained from this analysis about the origins of numerical shock instability in the approximate Riemann solvers. A set of numerical test cases are solved to show that the proposed scheme is free from numerical shock instability problems of the original HLLEM scheme at high Mach numbers. •Stability evaluation of Riemann solvers based on the direct Lyapunov method.•Identification of the cause of shock instability in the complete Riemann solvers.•Shock stable HLLEM scheme based on insights into shock instability.•Shock stability demonstration numerically and through phase portrait.</description><subject>Contact and shear waves</subject><subject>HLL family schemes</subject><subject>Lyapunov method</subject><subject>Numerical shock instability</subject><subject>Pressure perturbation</subject><subject>Riemann solver</subject><issn>0021-9991</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRb0AiVL4AHb-gYQZ51WLFap4SZWQoKwtx7GpozSObDcif0-qsGY1qzO65xByh5AiYHnfpq0aUgYsTxGzgvMLsgJgmHDO8Ypch9ACwKbINyuy_4yytp2NE9Wj7E4yWtdTZ6gcBu9-7FFGTT-sPsq-p8F1o_aBnoLtv2k8aNpYr1Wku0kOp96N9KjjwTU35NLILujbv7smX89P--1rsnt_eds-7hKFFY9JwZhp0PAKyhJ0w1TDAJBxqGqdZaWpgakai9oA5lnGNhUWJgfWmNmqmk2zNcHlr_IuBK-NGPy82E8CQZxTiFbMKcQ5hVhSzMzDwuh52Gi1F0FZ3Su9qIjG2X_oXyAnaSg</recordid><startdate>20250201</startdate><enddate>20250201</enddate><creator>Gogoi, A.</creator><creator>Mandal, J.C.</creator><creator>Saraf, A.</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7615-6947</orcidid></search><sort><creationdate>20250201</creationdate><title>Stability evaluation of approximate Riemann solvers using the direct Lyapunov method</title><author>Gogoi, A. ; Mandal, J.C. ; Saraf, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c179t-522fd1f970660ed2cd20012907be336fb02cb15bf0143328715f402df11371013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Contact and shear waves</topic><topic>HLL family schemes</topic><topic>Lyapunov method</topic><topic>Numerical shock instability</topic><topic>Pressure perturbation</topic><topic>Riemann solver</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gogoi, A.</creatorcontrib><creatorcontrib>Mandal, J.C.</creatorcontrib><creatorcontrib>Saraf, A.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gogoi, A.</au><au>Mandal, J.C.</au><au>Saraf, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability evaluation of approximate Riemann solvers using the direct Lyapunov method</atitle><jtitle>Journal of computational physics</jtitle><date>2025-02-01</date><risdate>2025</risdate><volume>522</volume><spage>113599</spage><pages>113599-</pages><artnum>113599</artnum><issn>0021-9991</issn><abstract>The paper presents a new approach of stability evaluation of the approximate Riemann solvers based on the direct Lyapunov method. The present methodology offers a detailed understanding of the origins of numerical shock instability in approximate Riemann solvers. The pressure perturbation feeding the density and transverse momentum perturbations is identified as the cause of the numerical shock instabilities in the complete approximate Riemann solvers, while the magnitude of the numerical shock instabilities is found to be proportional to the magnitude of the pressure perturbations. A shock-stable HLLEM scheme is proposed based on the insights obtained from this analysis about the origins of numerical shock instability in the approximate Riemann solvers. A set of numerical test cases are solved to show that the proposed scheme is free from numerical shock instability problems of the original HLLEM scheme at high Mach numbers. •Stability evaluation of Riemann solvers based on the direct Lyapunov method.•Identification of the cause of shock instability in the complete Riemann solvers.•Shock stable HLLEM scheme based on insights into shock instability.•Shock stability demonstration numerically and through phase portrait.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2024.113599</doi><orcidid>https://orcid.org/0000-0002-7615-6947</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2025-02, Vol.522, p.113599, Article 113599
issn 0021-9991
language eng
recordid cdi_crossref_primary_10_1016_j_jcp_2024_113599
source Elsevier
subjects Contact and shear waves
HLL family schemes
Lyapunov method
Numerical shock instability
Pressure perturbation
Riemann solver
title Stability evaluation of approximate Riemann solvers using the direct Lyapunov method
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T02%3A33%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20evaluation%20of%20approximate%20Riemann%20solvers%20using%20the%20direct%20Lyapunov%20method&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Gogoi,%20A.&rft.date=2025-02-01&rft.volume=522&rft.spage=113599&rft.pages=113599-&rft.artnum=113599&rft.issn=0021-9991&rft_id=info:doi/10.1016/j.jcp.2024.113599&rft_dat=%3Celsevier_cross%3ES0021999124008477%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c179t-522fd1f970660ed2cd20012907be336fb02cb15bf0143328715f402df11371013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true