Loading…

Grain concentrations of protein and mineral nutrients in a large collection of spelt wheat grown under different environments

A large number of spelt wheat genotypes (ranging from 373 to 772) were evaluated for grain concentrations of protein and mineral nutrients under 6 different environments. There was a substantial genotypic variation for the concentration of mineral nutrients in grain and also for the total amount of...

Full description

Saved in:
Bibliographic Details
Published in:Journal of cereal science 2010-11, Vol.52 (3), p.342-349
Main Authors: Gomez-Becerra, H.F., Erdem, H., Yazici, A., Tutus, Y., Torun, B., Ozturk, L., Cakmak, I.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A large number of spelt wheat genotypes (ranging from 373 to 772) were evaluated for grain concentrations of protein and mineral nutrients under 6 different environments. There was a substantial genotypic variation for the concentration of mineral nutrients in grain and also for the total amount of nutrients per grain (e.g., content). Zinc (Zn) showed the largest genotypic variation both in concentration (ranging from 19 to 145 mg kg −1) and content (ranging from 0.4 to 4.1 μg per grain). The environment effect was the most important source of variation for grain protein concentration (GPC) and for many mineral nutrients, explaining between 37 and 69% of the total sums of squares. Genotype by environment (G × E) interaction accounted for between 17 and 58% of the total variation across the minerals. GPC and sulfur correlated very significantly with iron (Fe) and Zn. Various spelt genotypes have been identified containing very high grain concentrations of Zn (up to 70 mg kg −1), Fe (up to 60 mg kg −1) and protein (up to 30%) and showing high stability across various environments. The results indicated that spelt is a highly promising source of genetic diversity for grain protein and mineral nutrients, particularly for Zn and Fe.
ISSN:0733-5210
1095-9963
DOI:10.1016/j.jcs.2010.05.003