Loading…

Effects of starch composition and type of non-solvent on the formation of starch nanoparticles and improvement of curcumin stability in aqueous media

In this study, we evaluated the effects of amylopectin/amylose ratio and non-solvent type on starch nanoparticle formation including the average particle size, polydispersity index, size distribution, and nanoparticle morphology using dynamic light scattering (DLS) and scanning electron microscopy (...

Full description

Saved in:
Bibliographic Details
Published in:Journal of cereal science 2017-07, Vol.76, p.122-130
Main Authors: Sadeghi, Rohollah, Daniella, Zsazsa, Uzun, Suzan, Kokini, Jozef
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this study, we evaluated the effects of amylopectin/amylose ratio and non-solvent type on starch nanoparticle formation including the average particle size, polydispersity index, size distribution, and nanoparticle morphology using dynamic light scattering (DLS) and scanning electron microscopy (SEM). The most uniform particles were obtained from normal corn starch with ethanol. The average particle size was 98.8 ± 1.8 nm using DLS while combination of size distribution study and SEM images showed that particle size ranged between 60 and 90 nm. A bimodal distribution was observed with two defined groups of nanoparticles when waxy corn starch (Amioca) was nanoparticulated with ethanol. SEM images of freeze dried samples and DLS size distribution curves of fresh samples showed that high amylose starch including Hylon V and Hylon VII gave uniform, spherical and small nanoparticles in the size range of 20–60 and 15–50 nm, respectively. The smallest nanoparticles were fabricated by precipitation with methanol, followed by ethanol and the largest nanoparticles were formed using acetone. Re-dispersion of nanoparticles was good when nanoparticles were fabricated using ethanol and acetone especially for Amioca, whereas redispersion of samples in aqueous PBS solution, precipitated using methanol was difficult especially in the case of Hylon VII. Stability of curcumin in the presence of 1 mg/ml native starch nanoparticles was much higher (83.7 ± 3.1%) than curcumin in phosphate buffered saline at pH 7.0 (5.5 ± 1.5%) over 10 days at ambient temperature. Interaction between iodine-potassium iodide solution and starch nanoparticles showed that the helical structures of amylose and amylopectin molecules remain in the nanoparticles and curcumin may interact with these helical structures giving it the stability which is not observed in water. •Amylopectin to amylose ratio significantly impacts nanoparticulation of starch.•Higher amylose content leads to smaller nanoparticles with ethanol.•Effect of non-solvent on nanoparticle size, distribution and morphology was studied.•Freeze dried starch nanoparticles prepared with ethanol and acetone were highly redispersible.•Stability of curcumin in aqueous medium was successfully improved with starch nanoparticles.
ISSN:0733-5210
1095-9963
DOI:10.1016/j.jcs.2017.05.020